Verzia: 20. februara 2004

Tento text nie je zamyslany ako jediny materidl, ktory by sam stacil na pripravu na
$tétnice. Skor by mal pomdct pri opakovani otazok.

Ked je nejakd ¢ast zadania otdzky uvedend v zatvorkach, znamena to, Ze hoci sa povodne
v otézkach vyskytla, no v poslednej verzii Statnicovych otédzok uz nebola. Do hranatych
zatvoriek som naopak daval tie podotazky, ktoré pribudli oproti pévodnej verzii. V pripade,
Ze niektort vynechanu ¢ast som uZ mal napisant v ¢ase aktualizcie otdzok (nové znenie
otazok sme dostali na obhajobéch), nechal som ju v texte, hoci sa ju netreba uéif. V novej
verzii otézok je vynechand celd 8. a 10. otazka a tiez velka cast 9.otdzky.

Jedint vynimku predstavuje ¢ast 14., 15. a 18. (a ...) otdzky, ktord bola v zadani uvedend
v zatvorkach. Teda niektoré zatvorky znamenaji skutocéné zatvorky.

Ur¢ite je tu este stale vela chyb, takze ak sa niekto naudi z tychto otdzok tvrdenia, ktoré
v skutoc¢nosti neplatia, vopred sa mu ospravedliiujem.

Chcel by som podakovat Marekovi Hyc¢kovi a Ondrovi Vacekovi, ktory opravenim mnohych
chyb prispeli k vyslednej podobe tychto otdzok (¢i skor odpovedi?).

Poznamky sa momentalne nachddzaji na thales.doa.fmph.uniba.sk/sleziak/texty.
St tam uverejnené aj zdrojaky - takze v pripade, Ze sa sylaby zmenia méte moznost si ich
upravit, nejaké casti vynechatf alebo naopak pridat. Ak by ste nasli v texte chyby, budem
rad, ked mi o nich date vedief na sleziak@fmph.uniba.sk a pri najblizsej aktualizécii tam
uz bude opravena verzia.

1 Teoéria ¢isel

Zdkladnd veta aritmetiky, vlastnosti prvocisel, zdkladné vlastnosti kongruencii. Diofantické
rovnice, pytagorovskée trojuholniky.
Pri pisani tejto otdzky som pouzival [ATA2] a [KOL].

1.1 Delitelnost

Definicia 1. a | b, (a # 0) ak existuje ¢ také, ze b = ag.

Definicia 2. Prirodzené ¢islo p > 1 sa nazyva prvocislom, ak jedinymi jeho kladnymi deli-
telmi st ¢isla 1 a p. Prirodzené ¢islo n > 1 sa nazyva zloZené ¢islo, ak n nie je prvodislo.

Veta 1. KaZdé cislo n > 1 je sucin prvocisel.

Lema 1. Nech b je celé a a prirodzené cislo. Potom existuje jedind takd dvojica cisel q, r,
Zeb=aq+r, 0<r<a.

Definicia 3. Cislo d sa nazjva spolocngm delitelom &isel a, b, ak d | a, d | b. Najvicsi prvok
mnoziny spolo¢nych delitelov éisel a a b je najvicsi spoloény delitel a, b, zna¢ime (a,b). Ak
(a,b) = 1, tak ¢isla a, b nazyvame nesidelitelnymi.

Lema 2. Ak sa éisla a, b nerovnaji sicasne nule, tak existuji také éisla xo, yo, Ze (a,b) =
axg + byo.

O nasledujtcej leme prof. Salat hovoril, Ze sa tiez zvykne volat zakladna veta aritmetiky.
Lema 3. Aka|b.c, (a,b) =1, tak a | c.
Lema 4. Nech p je prvocislo a p | a.b. Potom bud p | a, alebo p | b.

Veta 2. KaZdé ¢islo n > 1 md prdve jeden kanonicky rozklad.



Definicia 4. Najmensi spoloény ndsobok [a,b]

Veta 3. Pre lubovolné dve prirodzené ¢isla a, b plati [a,b] = (Z'l;),

1.2 Vlastnosti prvoéisel

Veta 4 (Euklides). Vsetkych prvocisel je nekonecne mnoho.

Definicia 5. 7(z) je pocet prvocisel p, ktoré spliiaju p < x (nepresahuji z). Funkciu 7
nazyvame prvociselnd funkcia.

. logx
Tvrdenie 1. 7(z) > 2log 2

Veta 5 (Prvoéiselna veta).

. 7(x)
lim =1
Z—00 (&)

Dokaz prvociselnej vety je velmi fazky, tdto veta patri medzi najvyznamnejsie vysledky
tedrie Cisel.

(o]
Veta 6. Nekoneény rad > pik prevrdtenych hodnot vsetkych prvocisel diverguje.
k=1

Definicia 6. Nech A C N, z € N. Ozna¢me znakom A(z) pocet vSetkych tych a € A, pre

ktoré a < x. Ak existuje lim @, nazyvame toto ¢islo asymptotickou hustotou mnoziny A
r— 00

a ozna¢ujeme ho h(A).
Veta 7. h(P)=0
Désledok 1. h(N\ P)=1

1.3 Kongruencie

Definicia 7. a = b(mod m) < m | (a — b)
Hovorime, Ze a a b st kongruentné a zapis a = b (mod m) nazyvame kongruenciou.

Relécia = je ocividne relaciou ekvivalencie.
Veta 8.
(i) Ak a=b(mod m) a c=d(mod m), tak
(a) a4+ c=b+d(mod m),
(b) a—c=b—d(mod m),
(¢) ac = be(mod m).
(i) Ak ac =bc(mod m) a (¢c,m) =1, tak a = b(mod m).

Veta 9. Mnozina véetkych zvyskovych tried pri definovanom scitani tvori Abelovu grupu.
Jednotkou operdcie séitania je trieda 0 (mod m).

Lema 5. Nech (a,m) = 1, ¢ je lubovolné éislo. Potom ezistuje jedind zvyskovd trieda
(mod m), Ze pre kazdy jej prvok x plati ax = ¢ (mod m).



Definicia 8. Nech f(r) = apx™ +a12" ! + ...+ a, je polyném n-tého radu s celoéiselnymi
koeficientami. Vyrokovi funkciu f(x) = 0 (mod m) nazyvame kongruenciou n-tého stupria s
celoc¢iselnymi koeficientmi.

Lema 6. Nech x1 = xo (mod m). Potom plati f(x1) = f(xo) (mod m).

Definicia 9. Zvyskov triedu (mod m) nazveme redukovanou zvyskovou triedou (mod m),
ak kazdy jej prvok je nesudelitelny s ¢islom m.

Veta 10. MnoZina vsetkych redukovangch zvyskovych tried (mod m) pri zavedenom ndsobeni
tvori grupu. Jednotka operdcie je trieda 1.

Definicia 10. Pre m > 1 nech ¢(m) oznacuje pocet €isel postupnosti 1,2,...,m — 1, m
nesudelitelnych s m. Funkcia ¢ sa nazyva Fulerova funkcia.

Tvrdenie 2. p(1)=1, p(p)=p—1

Lema 7. Nech (a,m) = 1, k = p(m). Ak {ri,re,...,rc} je redukovany zvyskovy systém
(mod m), tak aj {ari,ars,...,arg} je redukovany zvyskovy systém (mod m). (redukovany
zvyskovy systém = z kaZdej redukovanej zvyskovej triedy vezmeme jedného reprezentanta)

Veta 11 (Eulerova). Nech (a,m) = 1. Potom plati a®™ =1 (mod m)

cm=n(i- D) (1 1)

1.4 Linearne diofantické rovnice

Pre n = p{" ...pp* plati

Vseobecny tvar linearnej diofantickej rovnice je
a121 + @ + ... +apTr = (1.1)

kde a; a c st dané celé ¢isla, nezndme st x;.
Ozna¢me d = (a1, a9, .. ., ak).

Veta 12. Rownica (1.1) md rieSenie v celych cislach vtedy a len vtedy, ked d | c.

Uvazujme rovnicu s dvoma neznadmymi:
ar +by =c (1.2)

Veta 13. Ak d | ¢, tak existuji také xo,yo € Z, Ze axo + byo = ¢ a vietky rieSenia rovnice
(1.2) v celych éislach st dané parametrickymi rovnostami

b a
- ¢ = o — —t t € 7).
= a0 + o, Y=y~ (teZ)

1.5 Pytagorovské trojuholniky

Pytagorovské trojuholniky st pravouhlé trojuholniky s celo¢iselnymi dizkami stran.

PT(z,y,2) & 2% + 1% = 22

Vsetky pytagorovské trojuholniky mozno rozdelit do tried na zéklade podobnosti. Pri-
mitivny pytagorovsky trojuholnik je taky, ktory ma spomedzi podobnych pytagorovskych
trojuholnikov najmensi obsah. Pytagorovsky trojuholnik z,y, z je primitivny < (z,y) = 1
& (z,2)=1% (y,2)=1.



Lema 8. Ak x,y, z je primitivny pytagorovsky trojuholnik, tak jedno z éisel x, y je pdarne a
druhé€ nepdrne.

Veta 14. Ak PT(x,y, z) je primitivny pytagorovsky trojuholnik, tak existuji m,n € N, m >
n, (m,n) = 1 opacnej parity také, Ze v = m? —n?, y = 2mn, z = m? + n?. Plati to aj
obrdtene.

Veta 15. Ak PT(x,y,z) je primitivny pytagorovsky trojuholnik existuji také k,l € N, k > 1,

2 2 2 2
(k,1) = 1, obe nepdrne, %e x = ki, y = & ;l , 2= %

. Plati to aj obrdtene.

Veta 16. Ezistuje nekonecne vela primitivnych pytagorovskyjch trojuholnikov, ktorych pre-
pona je kvadrdatom prirodzeného cisla.

Veta 17. Existuje nekonecne vela primitivnych pytagorovskijch trojuholnikov, v ktorych jedna
odvesna je kvadrdtom prirodzeného cisla.

Veta 18 (Fermat). Neeristuje pytagorovsky trojuholnik, ktorého dizky dvoch strdn by boli
kvadrdty.

Veta 19. z" + y™ = 2”1 md nekonecne vela riesent.
1.6 Multiplikativne funkcie

Definicia 11. Funkcia f: N — C sa nazyva aritmetickd funkcia. Aritmeticka funkcia f sa
nazyva multiplikativna, ak sa nerovnd identicky nule, a ak z podmienky a,b € N, (a,b) =1
vyplyva

fa.b) = f(a).f(b)
Aritmetickd funkcia f sa nazyva iplne multiplikativna, ak tato rovnost plati pre lubovolné
a,beN.

Tvrdenie 3. Ak [ je multiplikativna funkcia, tak f(1) = 1.
Ak f a g st multiplikativne funkcie, tak o f.g je multiplikativna funkcia.

Veta 20. Nech a = p" ...pp* je kanonicky rozklad ¢isla a € N a nech f je multiplikativna
funkcia. Potom plati

Y F@ =1+ fpr) o+ F ) (L for) + - fB))
dla

7(n)=pocet delitelov ¢isla n

o(n)=sucet delitelov ¢isla n

Funkcie 7, 0 a ¢ st multiplikativne.
Funkcia n® je tiplne multiplikativna funkcia.

a1+1 ar+1
Pyt pkk

Tl 1
T(a)=(a1+1)...(ax + 1)

o(a)

Tvrdenie 4. Pre kazdé n > 1 plati o(n) > n+ 1.

Désledok 2. lim o(n) = 400

n—oo



Tvrdenie 5. liminf 7(n) =2 a limsup 7(n) = +o0

n—oo n—00

Kazdé prirodzené ¢islo & > 2 je hromadnou hodnotou postupnosti (7(n))S,. (7(p*) =

k+1)
T — .

n"

Tvrdenie 6. Pre kazdé n > 0 je lim
n—oo

Tvrdenie 7. > ¢(d) =n
d|n

Tvrdenie 8. lim ¢(n) = +oo

n—oo

Definicia 12. Mébiusova funkcia (1) = 1, u(a) = 0, ak existuje prvoéislo p také, ze p? | a
ap(a) = (=1)% ak a = p; ...px (prvoéisla p; st navzadjom rozne).

Veta 21. Nech f je multiplikativna funkcia a nech a = pi™ ...pp* je kanonicky rozklad cisla
a € N. Potom plati

doud)f(d) =1~ f(pr).. (L= flpx))
dla

Pri volbe f(n) =1, resp. f(n) = % dostaneme z predchadzajicej vety:

Dosledok 3.

Spld) =1, Y pld) =0 (a>1)

d|1 dla
d d 1
S ST
[1 dla j=1

pla) =ay 1D

dla

Definicia 13. Cislo n € N sa nazyva dokonalé, ak o(n) = 2n. (Ekvivalentne: n sa rovna
suctu svojich vlastnych delitelov.)

Veta 22. Pdrne ¢islo n € N je dokonalé prdve vtedy, ked md tvar a = 2P~1(2P — 1), kde p je
prvocislo a M, = 2P — 1 je tieZ prvocislo.

Nie je zname, ¢i existuje dokonalé neparne ¢islo, ani ¢éi je dokonalych ¢éisel nekonecéne vela.
1.7 Cantorove rozvoje realnych cisel

Veta 23. Nech (qr)72, je postupnost prirodzengch éisel vicsich ako 1. Potom kaZdé redine
¢islo x moZno jednoznacne vyjadrit v tvare

x:coJrZCik, (1.3)

i 1192 -4k

kde ¢, (k=0,1,...) si cel€ éisla, 0 < cx < qr (k=1,2,...) a pre nekonecne mnoho k plati
cr < qr— 1.



Tento rozvoj volame Cantoroviym rozvojom ¢isla x. Specidlnymi pripadmi st g-adické a
faktoridlové rozvoje.

Veta 24. Nech (qi)72, md rovnaky vyznam ako v predchddzajicej vete. Nech ku kaZdému
prvodislu p existuje nekonecne vela takych k, Ze p | qi,. Potom ¢islo x vyjadrené Cantorovgm
rozvojom (1.3) je iraciondlne vtedy a len vtedy, ked pre nekoneéne mnoho k plati ci, # 0.

To znamen4, Ze ak zakladna postupnost (gx)7o, splia predpoklady tejto vety, tak z je
raciondlne préve vtedy, ked Cantorov rozvoj je konecny.

o) o)
Veta 25. Cisla x1 = > Tﬁ;,l) axy =Y, % st iraciondlne.
n=1 ’ n=1 ’

Veta 26. Cislo x vyjadrené g-adickym rozvojom je raciondine vtedy a len vtedy, ked je tento
rozvoj periodicky.

Veta 27. Nech n € N, n > 2. Nech a je prirodzené ¢islo a a # k™ pre Ziadne prirodzené
¢islo k. Potom {/a je iraciondlne &islo.

Veta 28. Nech r je kladné raciondlne ¢islo a r # 10" pre Ziadne n € Z. Potom ¢islo log
je iraciondlne.

Tedria ¢isel je uzitocna na to, aby sa pomocou nej dalo promovat.
Landau

2 Moduly

Pojem modulu a zdkladné vlastnosti. Volné moduly, zdkladnd veta o tvare konecne gene-
rovaného modulu. Kanonické tvary matic, podobné matice. Charakteristicky a minimdlny
polyndm matice, elementdrne delitele a invariantné faktory matic.

2.1 Okruhy, idealy, okruhy s jednoznaénym rozkladom
Nejaké tvodné veci, z [ATA].
Faktorové okruhy a idealy

Definicia 1. Neprazdnu podmnoZinu I okruhu A nazyvame idedlom okruhu A, ak
(i) z,yel=z—-yel,
(i) zrel,a€e A=ax el zacl.

I je vlastny idedl, ak I # A.

Veta 1. Ak I je idedl okruhu A, tak mnoZina A/I vdetkych tried aditivnej grupy A podla
podgrupy I s operdciami
(a+D)+G+1)=(a+b)+1

(a+I)b+1)=ab+1

tvori okruh. Tento okruh nazgvame faktorovy okruh A podla I. Ak A je komutativny, resp.
obsahuje jednotku, tak aj A/I je komutativny, resp. obsahuje jednotku.



Definicia 2. Idedl I okruhu A nazyvame prvoidedl, ak
Va,be A:abel=a€lVbel

Idedl I okruhu A nazyvame mazimdlny, ak I # A a ak pre kazdy idedl J I C J C A
implikuje J = I alebo J = A.

Kazdy maximéalny ideal je prvoideal.

Veta 2. Faktorovy okruh A/I komutativneho okruhu A s jednotkou je polom prdve vtedy,
ked I je mazimdlny idedl.

Faktorovy okruh A/I komutativneho okruhu A s jednotkou je oborom integrity prdve vtedy,
ked I je vlastny prvoidedl.

Definicia 3. Hovorime, Ze prvok x € A generuje ideal I komutativneho okruhu A s jednot-
kou, ak I = zA = {za;a € A}.
Ideal I okruhu A nazyvame hlavnym idedlom, ak je generovany niektorym prvkom z € A.
Komutativny okruh A nazyvame okruh hlavnijch idedlov, ak kazdy idedl okruhu A je
hlavny.

Veta 3. V okruhu hlavnych idedlov je kazZdy prvoidedl mazimdlny.
Okruhy s jednoznaé¢nym rozkladom

Obor integrity (OI) = komutativny okruh s jednotkou bez delitelov nuly.

Euklidovsky okruh = taky obor integrity A, v ktorom existuje zobrazenie 6: A\ {0} — Z
také, ze plati:
a) 6(a) > 0 pre kazdé a € A.
b) Pre kazdé a,b € A, b # 0 existuju prvky ¢,r € A tak, ze a = bg + r, pri¢om alebo r = 0,
alebo r # 0 a §(r) < §(b).

Okruh s jednoznaéngm rozkladom (Gaussov okruh), je obor integrity, v ktorom sa kazdy
prvok dé zapisat v tvare a = upips .. .pn, kde a € U(A) (delitele jednotky v OI A) a p; st
ireducibilné prvky v A, pric¢om tento zdpis je jednoznacény az na poradie a asociovanost.

Euklidovské okruhy

V euklidovskom okruhu existuje najviési spoloény delitel dvoch prvkov.
Euklidovsky okruh je okruhom hlavnych idealov.

Okruhy hlavnych idealov

V okruhu hlavnych idedlov plati

a)a|b<s (a) D(b)

b)a~b< (a)=(b)

Ak a,b € A, A je OHI, tak

a) (a) + (b) = {x € A;2 = au+ bz, u,v € A} je idedlom v okruhu A,
b) existuje d € A s vlastnostou (d) = (a) + (b) a plati d = (a, b).

Veta 4. Nech A je OHI. Potom A je okruhom s jednoznacnym rozkladom prdve vtedy, ked
A je obor integrity.

Vo zvysku otazky budeme pod OHI rozumiet OI, ktory je OHI. (Takto to pouzival Gu-
rican. V [ATA] je to definované tak, ako som to dal sem.)



Gaussove okruhy

Nech A je okruh s jednozna¢nym rozkladom. Nech a = upips...pn, b = vq1qs ... st
dva kanonické rozklady prvkov a,b € A. Potom a | b prave vtedy, ked existuje injektivne
zobrazenie ¢: {1...k} — {1...k} tak, Ze p; ~ q;, pre vSetky i =1,... k.

2.2 Smithov kanonicky tvar

Matice nad euklidovskym okruhom nazyvame riadkovo ekvivalentné/ stipcovo ekviva-
lentné/ ekvivalentné, ak sa jedna d4 upravit na druhtt koneénou postupnostou riadkovych/
stipcovych/ fubovolnych tprav.

Veta 5. Nech A je matica typu m X n nad euklidovskym okruhom R. Potom ezistuje diago-
ndlna matica D = diag(dy, da, . ..) ekvivalenind s A a takd, Ze plati:

d; | d; pre pripustné i, j take, Ze i < j.
) ’ )
Matica D je jednoznacne uréend aZ na asociovanost.

Determinanty podmatic matice A typu r xr nazyvame minory A radu r. Najvicsi spoloény
delitel minorov A radu r oznac¢ime 7, (A). Potom plati d ...d, = n,.(A). Prvky na diagonéle
Smithovho kanonického tvaru matice A nazyvame invariantnymi faktormi matice A.

Veta o Smithovom kanonickom tvare plati aj ak R je obor integrity a okruh hlavnych
idedlov. (Vo zvysku otdzky vidy budeme pod okruhom hlavngch idedlov rozumiet obor in-
tegrity.) Potrebujeme vSak vSeobecnejsiu definiciu ekvivalencie matic. Matice A a B typu
m X n nazveme ekvivalentnymi, ak existuju Stvorcové matice P a @, ktoré su delitele jed-
notky v prislusnych okruhoch matic a plati A = PBQ.

2.3 Pojem modulu a zakladné vlastnosti

Definicia 4. Nech R je okruh a (M, +) je komutativna grupa. Potom dvojicu (R, M) spolu
s ,,bindrnym parovanim“ ®: R x M — M nazyvame lavostrannym modulom nad okruhom
R, ak

(i) prea€ Raz,ye Mplatia® (x +y) =(a®z)+ (a ©y)
(ii) prea,b€ Rax € M plati (a+b) 0z =(a®z)+ (bO x)
(iii) prea € Raxz,y e M plati a ® (b © z) = (ab) ® x
© sa zvycajne nazyva skaldrny sicin (skaldrne ndsobenie).
Ak navySe R je komutativny okruh s jednotkou a plati
prexeM1ox=uz,
tak ide o unitdrny modul. My sa zaoberame len unitarnymi modulmi.

Prikladmi modulov st vektorové priestory, kazda grupa je Z-modul, ak I je ideal okruhu
R, tak (R, I) je R-modul. Ak V(F) je kone¢norozmerny vektorovy priestor nad polom F' a A
je jeho linedrna transformacia, tak definujeme unitdrny modul (F[v], V(F), A), kde f(y)ox =

xf(A).



Definicia 5. Nech (R, M) je modul. Nech K je podgrupa grupy (M,+). Potom (R, K)
nazyvame podmodulom modulu (R, M), ak prea € R a z € K je vzdy ax € K.

Nech (R, M), (R, K) st dva moduly nad R. Nech ¢: M — K je grupovy homomorfizmus.
Potom hovorime, ze ¢ je modulovy homomorfizmus, ak naviac pre kazdé a € R a x € M plati

(ax)p = a(zp).

Definicia 6. Nech § # X C M, kde (R, M) je modul. Nech [X] zna¢l mnozinovy prienik
vietkych podmodulov modulu (R, M) obsahujicich mnozinu X. [X] je tieZ podmodul modulu
(R, M). Nazyvame ho podmodul generovany mnoZinou X. Prvky z mnoziny X sa nazyvaja
generdtormi (pod)modulu [X]. Ak pre nejakt koneéni podmnoZinu X C M je [X] = M,
hovorime, ze (R, M) je konecéne generovany modul.

Tvrdenie 1. Nech (R, M) je unitdrny modul. Potom (R, K) je podmodul modulu (R, M)
prdve vtedy, ked a,b € R a x,y € K implikuje ax + by € K.

Tvrdenie 2. Nech (R, K) je modul nad komutativnym okruhom R. Potom
X]|={zeK;z=mz1+ ...+ npxp +a1y1 +... +asys A7, EN A
Aniy...,n. €ELNa,...,as € RAx1,..., 20, 91,...,ys € X}
Ak (R, K) je unitdrny modul, tak
X]={zeK;z=ay1+...+asys N\s€N Aay,...,as E RAy1,...,ys € X}.

Relacia ekvivalencie © na M sa nazyva kongruenciou modulu (R, M), ak © je kongruen-
ciou na grupe M a z = y(©) implikuje ax = ay(0). Podobne ako pri grupéch sa d4 definovat
faktorovy modul podla danej kongruencie.

2.4 Volné moduly

Definicia 7. Unitdrny modul (R, M) nazyvame volngm modulom nad mnozinou volnych
generatorov S, ak

(i) [S] = (R, M) a

(ii) ak ayx1 + ...apx, = 0 pre a; € R a po dvoch rozne z1,...,z, € S, tak a1 = ag =
...=a, =0.

V takomto pripade budeme pre (R, M) pouzivat tiez oznadenie Fr(S). MnozZinu volnych
generatorov S tiez nazyvame bazou volného modulu Fr(S). Fr(n) znamend volny modul s
n-prvkovou bazou.

Veta 6. Nech (R, M) je unitdrny modul. Potom (R, M) je volny modul prive vtedy, ak
(i) [S] = (R, M),

(i) kazdé zobrazenie f: S — K do (lubovolného) unitdrneho modulu (R, K) sa dd jedingm
sposobom rozsirit na homomorfizmus ¢: M — K, t.3. ¢|S = f.

Definicia 8. Nech {(R, M;);i € I} je mnoZina modulov. Potom
[[Mizien) ={f: T J(M;:i€l);f6) e Myyi eI}

je tzv. kartezidnsky sucin mnozin M;, ¢ € I. Na tejto mnozine definujeme operacie @ a ® po
zlozkach. Dostaneme tak modul - priamy sucin modulov M,;.



Veta 7. Modul (R, M) je izomorfny s priamym sicinom n modulov nad R prdve vtedy, ked
existuji podmoduly P; modulu (R, M) tak, Ze plati:

(i) M=[PLU...UP,] a
(i) {0} = P,N[PLU...UP,_1] pre vietky i = 2,...n.
Ak st splnené uvedené dve podmienky, tak (R,M) = (R,Py X Py X ... X P,;)
Priamy stéin modulov (R, M7 X ... x M,) zna¢ime tiez M1 @ ... ® M,.

Veta 8. Nech R je okruh, (R, M) je unitdarny modul a M = [eq,...,e,]. Potom M = [e1] &
... ® [en] prdve vtedy, ked z rovnice aje1 + ...+ ane, = 0 vyplyva, Ze are; = ... = ape, = 0.

Veta 9. Nech R je okruh s 1. Potom unitdrny modul (R, R1X...XR,), n>1kde Ry = ... =
R, = R je volny modul nad n-prvkovou mnoZinou volngch generdtorov S = {es,...,en}, kde
e1=(1,0,...,0),...,en = (0,...,0,1).

Veta 10. Nech R je OHI. Potom kaZdy podmodul volného modulu Fr(n) je volng modul s
koneénou bazou o m < n prvkoch (t.j. existuje bdza, ktord md najviac n prokov).

Veta 11. Nech R je obor integrity s 1, nech (R, M) je konecnogenerovany volny modul, nech
A1y...,0n @ B1,...,0m st dve bdzy tohoto modulu. Potom m = n.

Definicia 9. Nech (R, M;), ¢ € I st unitdrne moduly. Potom priamy sué¢in tychto modulov
K = [[(M;;i € I) je tiez unitdrny modul. Podmnozina L = {f € K; f(i) = 0 pre skoro
vSetky (t.j. vSetky az na koneény pocet) i € I} tvorl podmodul modulu (R, K). Modul L
nazyvame priamy sicet modulov (R, M;), i € I a znaéime ho Y (M;;i € I).

2.5 Veta o rozklade modulov

Definicia 10. Nech (R, M) je modul, R je okruh hlavnych idedlov. Ak a € M, tak generator
(hlavného) idealu {r € R;ra = 0} sa nazyva rdd prvku a, znac¢ime rad(a).

Veta 12. Nech (R, M) je konecne generovany unitdrny modul nad okruhom hlavngch idedlov
R. Potom ezistuje rozklad na cyklické podmoduly M = [f1] @ [fo] ® ... ® [fx], kde rad(f;) |
rad(f;) pre 1 <i < j < k. Dalej ak rad(f1) t 1, tak tento rozklad je jednoznacny, presnejsie
povedané, ak M = [fi] @ [f5] © ... @ [fi] a je splnené, Ze rad(f]) {1 a tieZ rad(f]) | rad(f})

pre 1 <i<j <k, tak k = s arad(f;) = rad(f]).

Déosledok 1. Nech (R, M) je konecne generovany unitdrny modul nad okruhom hlavngch
idedlov. Potom M = M, ® F, kde M; je podmodul prvkov koneéného rddu a F je volng
modul nad R.

Dimenzia volného modulu F je urcend jednoznacne a nazyva sa Bettiho &islo modulu
(R, M).

Dosledok 2. Konecne generovand komutativna grupa je priamy sucin komutativnej peri-
odickej a volnej komutativnej grupy.

Dosledok 3. Konecne generovand komutativna grupa je priamy sucin cyklickych grup.
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2.6 Jordanov kanonicky tvar

Dve matice A, B typu n x n nad polom F st podobné, ak existuje reguldrna matica P
takd, 7e B = PAP~1, alebo, ekvivalentne, ak sii matice A, B maticami toho istého linedrneho
zobrazenia daného vektorového priestoru pri dvoch bézach.

Modul prislichajici matici A mozno podla vety o rozklade modulov rozlozif na cyklické
podmoduly. O nich plati:

Lema 1. KaZdy cyklicky podmodul M; je podpriestor vektorového priestoru V (F), ktory je
invariantny vzhladom na linedrne zobrazenie A.

7 toho vyplyva, ze matica A je podobné blokovo diagonalnej matici, kde bloky zodpove-
daji podpriestorom M;.

Definicia 11. Minimdalny polyndm m a o (7y) transformécie (matice) A v bode a je normovany
polyndém, ktory generuje idedl Ma o = {f € F[y];af(A) = 0}. (ma,a(y) = rad(a))
Minimdlny polyndm ma s(7y) transforméacie (matice) A na podpriestore S je normovany

polyndém, ktory generuje idedl Ma g = {f € F[y]; Va € S)af(A) =0} = (| Ma,a.
aes
Minimdlny polyndm m 4 v, () transformacie (matice) A (na priestore V,,(F')) je normo-

vany polyném, ktory generuje idedl M4y, = {f € F[y|; Va € V,)af(A) =0} = (| Ma.a.
aeVy

M; = [g;] m& bazu g;, g; A, . .. g; A )~ kde d; = rad(g;) =Ma 4, (z) = 2" +apy_12™  +
...+ a1z + ag. Transformacia A ziZena na podpriestor M; ma pri tejto baze maticu

0 10 0

0 0 1 0

0 0 0 1
—ag —ai s |

Maticu, ktoré pozostava z takychto blokov na diagondle je Jordanov kanonicky tvar matice
A prvého druhu.

Ak (F[y],V(F),A) = [q1]®. .. ®[gx], tak polynémy rad(g1), ..., rad(gr) (=ma,g(7), ...,
ma.g, (7)) nazyvame invariantné faktory matice A. S to diagondlne prvky Smithovho kano-
nického tvaru matice yI — A.

Nech M = (F[v],V(F),A) = [g] a nech rad(g) = mi(y)ma(7)...mx(y), priCom m; sa

po dvoch nestdelitelné. Polozme 7;(y) = %. Plati

Veta 13. Ezistuji ey ...e; také, Ze M = [g] = [e1] @ ... ® [e)] a rad(e;) = m;.

(Prvky e; sa ndjdu ako e; = m;(v)g)
Tato veta umoziiuje rozlozit jednotlivé bloky Jordanovej kanonickej matice prvého druhu
nasledovnym sposobom: Nech blok C; je pridruzeny ku polynému (invariantnému faktoru

matice A) di(y) = pii* pfsl, kde jednotlivé polynémy st ireducibilné normované a po
dvoch nestdelitelné. Potom na zdklade predoslej vety vieme este blok C; rozlozit na blo-
kovo diagonalnu maticu diag(B;1, - . ., Bis,; ), kde kazdé B;; je matica pridruzend k polynému

Pil;ij (7). Tieto polynémy sa nazyvaju elementdrne delitele matice A.
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Ak uvazujeme o module M = (F[y], [g], A), pricom rad(g) = p*(v), kde p(7) je ireduci-
bilny polyném. Potom vektory

g=g g2 = gA gp = gAT!
gg+1 = gp(A) Gar2 = gp(A)A . Ga+p = gp(A)AI71
Goq+1 = gp*(A) 92q+2 = gp*(A)A e 92q+p = gp*(A)AT!
G—1)g+1 = 90" HA)  gu—1)gr2 = 90" THA)A L ge—1ygrq = gpF T H(A)ATT!

tvoria bazu. Vzhladom na tito bazu dostaneme vyjadrenie A v tvare

P N O 0 O
0 P N 0 O
B=| ...
0 0 O P N
0 0 O 0o P
kde
0 1 0 0 0
0 0 1 0 0
P o=
0 0 0 0 1
—Cp —C1 —C2 —Cq—2 —Cq—1
a
0 0 0
0 0 0
N=|..cooiiiii.
0 0 0
1 0 0

Dostali sme Jordanov kanonicky tvar matice A druhého druhu.
Nad algebraicky uzavretym polom F st ireducibilné normované polynémy v tvare z — a.
V tom pripade dostaneme

a 1 0 0 0

0O a1 ... 00

J(x,a)k =
0 0 a 1

0 0 0 0 a

Veta 14. Nech A, B st matice n X n nad polom F. Nasledujice podmienky su ekvivalentné:
(i) A a B st podobné,

(i) vI — A a vI — B si ekvivalentné nad F[y] (t.j. maji ,rovnaky® Smithov kanonicky
tvar),

(iii) A a B maju rovnaké invariantné faktory,
(iv) A a B maji rovnaké systémy elementdrnych delitelov.
Veta 15. Nech A je matica nad polom F. Nasledujice podmienky si ekvivalentné:

(i) A je podobnd diagondlnej matici,
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(ii) elementdrne delitele matice A si polyndmy prvého stupria,
(iii) posledny invariantny faktor md samé jednoduché korene a tie leZia vsetky v poli F.

Definicia 12. Charakteristicky polynom matice A je polyném det(xl — A). Minimdlny po-
lyndm matice A je nenulovy polyném p najnizsieho mozného stupiia taky, ze p(4) = 0.

Veta 16. Charakteristicky polyndm matice A je sicin jej invariantnych faktorov (a teda aj
véetkych elementarnych delitelov).

Veta 17. Minimdlny polynom matice A je jej posledny invariantny faktor.

Désledok 4. Matica A je podobnd diagondlnej matici prdve vtedy, ked jej minimdlny poly-
ném md len jednoduché korene a tie vietky patria do pola F.

Veta 18 (Cayley-Hamilton). Nech cha(y) € F[y] je charakteristicky polyndm matice A.
Potom ch4(A) = 0.

Neistota duse je zl4 vlastnost, ale istota je smiesna.
Voltaire

3 Grupy

Sylowove vety z tedrie konecngjch grip. Volnd grupa a jej podgrupy. Volny sicin grip. Radi-
kdly idedlu, prvoidedl a mazimdlny idedl okruhu. Polopriamy sucin okruhov. (Okruhy zlomkov,
primdrny rozklad idedlu.)

3.1 Normalne podgrupy a grupy permutacii

Zdalo sa mi, ze aj toto by som mal niekde dat. Ak sa vam bude zdaft, Ze st to prilis lahké
veci, ktoré dokonale ovlddate, sta¢i to jednoducho preskocit.

Grupy permutacii

Cyklickou permutdciou (cyklom) dizky k prvkov aj,as,...,ar mnoziny X nazyvame per-
mutéciu v, takd, Ze a;y = a;+1 (i =1,...,k — 1) a agy = a1. Oznacujeme v = (ajaz . ..ax).

Sucin disjunktnych cyklov nezavisi od poradia. Kazda permutécia je stcin disjunktnych
cyklov. Tento rozklad je jednoznaény az na poradie a cykly dizky 1. Rad permutécie je
najmensi spoloény nasobok dlzok cyklov vystupujicich v rozklade.

Transpozicia = cyklus dizky 2. Kazda permutécia sa da zapisaf ako stéin transpozicii.
Parita permutécie = parita po¢tu transpozicii = parita poctu inverzii (i < j, ip > jp).

Sp = symetrickd grupa rddu n = permutécie mnoziny {1,...,n}

A,, = alternujica grupa = grupa vsetkych parnych permutécii mnoziny {1,...,n}

Grupa A, je generovana cyklami dizky 3.

Pre n > 5 jediné normélne podgrupy grupy S, st 1, A,, S,. (4, je jadro homomorfizmu,
ktory kazdej permutécii priraduje jej paritu, teda je to norméalna podgrupa.)

Ak p € S, tak o Hay ...ax)p = (a1pazp. .. arp). K lubovolnym dvom cyklom a, 3 € S,,
rovnakej dlzky existuje permutacia ¢ € S, takd, ze 8 = ¢ law. Obe tieto vlastnosti sa
prenest aj na stéin disjunktnych cyklov. Teda ¢1, ¢o st konjugované, ak st rovnaké dlzky
cyklov v ich rozkladoch.
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Normalne podgrupy

Definicia 1. Podgrupa H grupy G sa nazyva normdlna (alebo invariantnd) v G, ak pre
kazdy prvok a € G plati implikicia: h € H = a"‘ha € H.

Ak H je normélna, tak definujeme faktorovi grupu G/H. Existuje jednojednoznaény
vztah: normélne podgrupy < kongruencie < jadrd homomorfizmov.

gNg ' =N & gN = Ng.

Ak H C K st normélne podgrupy grupy G, tak H je normélna podgrupa grupy K a
K/H je normélna podgrupa grupy G/H.

Vnitorné automorfizmy: f, : z +— a~‘za.

a — f, je homomorfizmus, jeho jadro je Z(G).

Tvrdenie 1. Ak H, N su podgrupy G a N je normdalna, tak HN je podgrupa G. Ak navyse
H je normdlna, tak aj HN je normdlna.

Prienik norméalnych podgrip je normalna podgrupa. To znamenad, Ze existuje najmensia
norméalna podgrupa G obsahujtica dani podmnozinu G.

3.2 Sylowove vety

Tvrdenie 2. Nech G je cyklickd grupa, |G| = n, d | n. Potom ezistuje podgrupa H grupy G
takd, ze |H| = d.

Nech G je komutativna grupa, |G| =n, d | n. Potom ezistuje podgrupa H grupy G takd,
Ze |H| = d.

Akcia grupy na mnozine

Definicia 2. Nech M # () je mnozina, (G,o) je grupa. Akciou grupy G na mnoZine M
nazveme zobrazenie a: M X G — M také, ze
a) (typ 1) 1. (Ym € M)a(m,e) =m
2. (Ym € M)(¥1, g2 € G)a(a(m, g1), g2) = a(m, g1  g2)
b) (typ 2) 1. (Vm € M)a(m,e) =m
2. (Vm € M)(Vghgz € G)a(a(m, g1), g2) = a(m, g2 © g1)

Strucnejsi zapis: me = m, (mgi)g2 = m(g192); (mg1)g2 = m(g291).
Priklady: ay(a,g) = gag™! pre M = G (konjugécia, akcia konjugaciou)
Ak H je podgrupa G, tak ay(X,h) = {heh ;2 € X} pre h € H je akcia grupy H na
mnozine M = P(G) \ {0}.

Definicia 3. Nech M # () je mnozina, G je grupa, « je akcia G na M. Hovorime, Ze
Sa(m) ={g € G;a(m, g) = m} je stabilizdtor prvku m € M v akcii a.

Tvrdenie 3. S,(m) je podgrupa G.

Definicia 4. Nech M # ( je mnoZina, G je grupa, a je akcia G na M. Hovorime, Ze
Oq(m) = {n € M;(3g € G)a(m, g) = n} je orbita prvku m € M v akcii a.

Veta 1. |Oq(m)| = |G : So(m)]
Lema 1. Systém {Oy(m):m € M} je rozklad M.

Definicia 5. Nech G je grupa, ) # X C G. Potom mnoZinu Cg(X) = {z
X)zx = w2z} nazyvame centralizdtor mnoziny X v grupe G. Specidlne Cg(G
nazyvame centrum grupy G.

€ G;(Vx
) = (G)
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Definicia 6. Nech G je grupa a H je podgrupa G. Hovorime, ze H je charakteristickd, ak
pre kazdy homomorfizmus ¢: G — G plati p(H) = H.

Kazd4 charakteristickd podgrupa je normélna. Z(G) je charakteristickd podgrupa.
Ozna¢me grg~! =: 29, {aM;2 € X} = X"

Definicia 7. Nech H je podgrupa G. Mnozina Ng y(X) = {h € H : X" = X} sa nazyva
normalizdtor mnoziny X v grupe H.
Ng.¢(X) =: Ng(X) je normalizator X v G.
Ng,u(X) = Say(X) a Co({z}) = Sa, (¥) = Ne,a({2}), preto Ngu(X) a Ca({z}) su
podgrupy G. Ca(X) = (] Ce({z}), teda aj Cs(X) je podgrupa G. (Nemusi byt normélna.)
zeX

Definicia 8. Nech G je grupa, a,b € G. Hovorime, Ze a a b st konjugované, ak existuje
g € G také, ze b = a9 = gag™! (t.j. b € Oq,(a)). Je to reldcia ekvivalencie.

g a—a’ =gag~"t je vnidtorny automorfizmus.

g — g je tzv. antihomomorfizmus (obracia operacie).

Sylowove vety

Lema 2. Nech G je grupa, K, H st podgrupy G. Triedou rozkladu G podla dvojného modulu
K, H nazyvame mnozinu KgH = {kgh;k € K,h € H} (pre g € G).
Triedy KgH, g € G tvoria rozklad grupy G.

Veta 2. Nech K, H st podgrupy G. Pocet lavyjch tried rozkladu podla podgrupy H v mnozine
KgH je [K : KNgHg™ '] = [¢g7'Kg : g 'Kg N H]. Pocet pravych tried rozkladu podla
podgrupy K v mnozine KgH je [gHg™': KNgHg ' =[H :g 'Kgn HJ.

Lema 3. |0y, (9)| =1 < g € Z(G)

Veta 3 (Cauchy). Nech G je koneéna grupa, p je prvocislo a p | |G|. Potom existuje
podgrupa H grupy G takd, Ze |H| = p.

Déosledok 1. Nech G je konecnd grupa takd, Ze existuje prvocislo p s vlastnostou p | |G|
a pre kaZdi vlastni podgrupu H plati p | |[G : H]|. Potom G md netrividlne centrum, t.j.

2(G) # {e}.
Désledok 2. Nech G je grupa s p? prvkami, pricom p je prvocislo. Potom G je komutativna.
Veta 4 (1. Sylowova). Nech G je grupa, p je prvocislo, |G| = p™.s, pts. Potom

(i) v G existuji podgrupy Hi, ..., H,, také, Ze |H;| = p',

(ii) ak i < m a H je p'-prokovd podgrupa G, tak existuje p**-prvkovd podgrupa G takd,
Ze H je jej invarianind podgrupa.

Definicia 9. Grupa G sa nazyva p-grupa, ak kazdy jej prvok ma rad tvaru p™. (p-prvodéislo)
Tvrdenie 4. Konecénd p-grupa G md p™ prvkov pre vhodné m.

Definicia 10. Nech G je koneénd grupa, p je prvocislo, |G| = p™.s, p 1 s. Podgrupa S grupy
G sa nazyva Sylowova p-podgrupa G, ak |S| = p™. Podgrupa S grupy G sa nazyva Sylowova
podgrupa G, ak existuje prvocislo p také, ze S je Sylowova p-podgrupa G.

Déosledok 3. Ak p je prvocislo a p | |G|, tak existuje Sylowova p-podgrupa grupy G. Ak S
je podgrupa G, |S| = p¥, tak existuje Sylowova p-podgrupa H grupy G takd, e S C H.
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m—1

Déosledok 4. Ak G je koneénd p-grupa, |G| = p™, tak kazda podgrupa S takd, Ze |S| = p
je inwvariantnd v G.

Veta 5 (2. Sylowova veta). Nech Py, P> st dve Sylowove p-podgrupy G. Potom (Jg €
G)P, = gPg™t, t.j. Py a Py si konjugované.

Dosledok 5. Nech G je konecnd grupa, S je Sylowova p-podgrupa. Potom S je jedind Sylo-
wova p-podgrupa grupy Na(S).

Veta 6 (3. Sylowova). Nech G je koneénd grupa, p | |G|, p je prvocislo. Potom pre pocet
k Sylowovyjch p-podgriup plati

(i) k|G|
(ii) k=1+1p, 1 € Ny

Veta 7. Nech P C K C H C G su podgrupy grupy G. Nech P je Sylowova p-podgrupa,
K = N¢g(P). Potom Ng(H) = H.

Veta 8. Nech A, B s invariantné podgrupy G také, e ANB ={e} a AB=[AUB]=G.
Potom G =2 A x B.

Veta 9. Nech G je grupa, x € G je taky, Ze rad(x) = mn, (m,n) = 1. Potom ezxistuje jedind
dvogica prvkov y, z € G takd, Ze x = yz = zy, pricom rad(y) = m, rad(z) = n.

Tvrdenie 5. Konecénd p-grupa md netrividlne centrum.
Veta 10. Nech G je konecnd grupa. Nasledujiice podmienky st ekvivalentné:

(i) Ak pre prvocislo p plati p | |G|, tak v G existuje prave jedna Sylowova p-podgrupa (t.j.
pre kazdé pripustné p md len jednu Sylowovu p-podgrupu).

(it) G sa dd napisal ako priamy sicin svojich Sylowovych p-podgrip.
(iii) Ziadna vlastnd podgrupa grupy G nie je totoind sa svojim normalizdtorom.
Veta 11. Nech G je p-grupa a H C G je invariantnd p-prvkovd podgrupa. Potom H C Z(G).

Definicia 11. [a,b] = aba='b~! = komutant prvkov a, b
G, G] = [{[a,b]; a,b € G}] = komutdtor grupy G

[G, G] je charakteristickid podgrupa (teda je normadlna).

G/N je komutativna < G 2 N 2 [G,

Oznaé¢me Z1(G) = Z(G) a Zy41(G) = v~YHZ(G/Zx(G))) (¢ je prirodzeny homomorfiz-
mus).

1C Z1(G) C Z(G) < ...

Definicia 12. Grupa G je nilpotentnd, ak existuje také k, ze Z;(G) = G. Najmensie také k
nazveme stupen nilpotentnosti grupy G.

Tvrdenie 6. KaZdd konecnd p-grupa je nilpotentnd.
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3.3 Volné grupy a volné stiéiny
Volna grupa a jej podgrupy

Nech X' = {a,a%,b,b71,...} pre X = {a,b,...}. Nech W' je mnozina vsetkych slov nad
abecedou X’. Slovo w € W' je v redukovanom tvare ak neobsahuje podslovo tvaru zz~! alebo
x 1. D4 sa ukdzaft, Ze pre kazdé slovo existuje jeding redukovany tvar, bez ohladu na to, v
akom poradi vykondvame redukcie. Ak vytvorime reldciu ekvivalenciu na W’ takt, ze 2 slova
buda ekvivalentné ak maja rovnaky redukovany tvar a definujeme néasobenie, dostaneme
grupu F'X. FX je volnd grupa na X.

Tvrdenie 7. Pre lubovolné zobrazenie f: X — G, kde G je grupa, existuje jeding homo-
morfizmus p: FX — G taky, Ze p|x = f.

Veta 12 (Nielsen-Schreier). Podgrupa volnej grupy je volnd.
TODO Mozno by sa patrilo stratit aj par slov a dokaze.

Veta 13. Ak U je podgrupa grupy F, indezu n, tak U md n(r — 1) + 1 generdtorov.
U= Fn(r71)+1
Volny sti¢in griap

Volny stéin grap mozno reprezentovat ako postupnosti, v ktorych sa striedaju prvky
jednotlivych grup, ktoré vystupuji v stéine. Opéf sa d4 zaviest ekvivalencia, redukciu bude
teraz predstavovat vynechanie jednotky niektorej grupy z postupnosti a nahradenie dvoch
po sebe iducich prvkov tej istej grupy ich stic¢inom.

Pisat sem aj volny st¢in s amalgamaciou???

Veta 14 (Kuro$). Nech G = [],.; Gi je volng sicin grip. Nech H # 1 je podgrupa grupy
G. Potom H je tieZ volny sicin grip v tvare

H = FHa]-_lBjOzj,

kde F je volnd grupa a kaZdd s podgrip a;lBjaj je podgrupa konjugovand s podgrupou B;
niektorej z grip G;, i € 1.

3.4 Okruhy, radikaly, prvoidealy
Prvoidealy v komutativnych okruhoch

V tejto Gasti R bude znamenat komutativny okruh s jednotkou.
Lema 4. a € R nie je invertibilng < existuje maximdlny idedl I okruhu R taky, Ze a € I.

Lema 5. Nech I je idedl okruhu R a x € R. Potom najmenst idedl okruhu R, ktory obsahuje
Iajx jel+ (z)={a+br;aecl,beR}.

Lema 6. I je mazimdlny idedl R < (Vr ¢ I)(3x € R)(1 —rz € I).

Veta 15. Ak A je idedl v R, A C B, B je prvoidedl, potom mnoZina {P;A C P a P je
prooidedl} md minimdlny prvok.
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Definicia 13. Nech R je komutativny okruh. Radikdl R je rad(R) = (){I; I je prvoideal}.

Ak R je obor integrity, tak rad(R) = 0.
Radikal je ideal.

Definicia 14. Prvok a okruhu R sa nazyva nilpotentny, ak existuje n € N také, ze a™ = 0.

Lema 7. Nech T C R a existuje idedl I taky, Ze I N'T = (). Potom ezistuje mazimdlny (v
zmysle inklizie - nie mazimdlny idedl okruhu) idedl Iy taky, e IoN'T = ).

Definicia 15. T C R je uzavretd na konecné stéiny, ak 1 € T, 0 ¢ T a pre a,b € T aj
abeT.

Lema 8. Nech T C R je uzavretd na konecné suciny, P je mazimdlny idedl (mazimdlny
vzhladom na inkliziu) taky, ¢ PNT = (. Potom P je prvoidedl.

Tvrdenie 8. rad(R) = {a € R;a je nilpotentny}
Definicia 16. Jacobsonov radikdl Rad(R) = ((I;I je maximalny ideal)
Lema 9. r € Rad(R) < (V)1 — rx je invertibilny v R

Definicia 17. Okruh R je polojednoduchy, ak Rad(R) = {0}. R md trividlny radikdl, ak
rad(R) = {0}.

Veta 16. (i) R/Rad(R) je polojednoduchy okruh.
(i) R/rad(R) md trividlny radikdl.
Polopriamy sucin
Definicia 18. Okruh R nazyvame polopriamy sicin okruhov S;, i € I ak k: R — [[S; a
kazdé m; o k je surjektivne.

Veta 17. Okruh R je polopriamy sucin okruhov S; i € I & S; & R/K;, K; je idedl R a
N K; = {0}.

Désledok 6. Komutativny okruh R je polojednoduchy prdve vtedy, ked je polopriamy sucin
poli. Komutativny okruh md trividlny radikdl prdve vtedy, ked je polopriamy sucin oborov
integrity.

Désledok 7. Komutativny okruh R md trividlny radikdl prdve vtedy, ked R je izomorfny
podokruhu sucinu oborov integrity.

Désledok 8. Komutativny okruh R md trividlny radikdl prdve vtedy, ked R je izomorfny
podokruhu sicinu poli. (Pri dokaze sa vyuZije, Ze kaZdy obor integrity vieme vloZit do podie-
lového pola.)

Definicia 19. Hovorime, Ze okruh R je polopriamo merozlozitelny ak prienik vsetkych jeho
nenulovych idedlov je nenulovy ideal.

Tvrdenie 9. Ak R je polopriamo nerozloZitelny a R je polopriamy sucin S;, tak R = S; pre
niektoré i a pre j # i je S; = {0}.

Veta 18 (Birkhoff). KaZdy okruh je polopriamy sicin polopriamo nerozloZitelngch okruhov.
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3.5 Okruhy zlomkov

Najprv by som aspoii velmi struéne spomenul, ¢o je podielové pole. Jednak preto, ze tieto
dve konstrukcie st podobné a dvak preto, zZe podielové pole asi patri k veciam, ktoré by mal
¢lovek kondiaci struktury vediet.

Zlomkom nad oborom integrity D nazyvame usporiadant dvojicu (a,b), kde a,b € D,
b # 0. Na mnoZine vSetkych zlomkov definujeme reliciu ekvivalencie (a,b) = (a’,’) prave
vtedy, ked ab’ = a’b. Dalej definujeme stcet a sac¢in ako (a,b) + (c,d) = (ad + be, bd),
(a,b)(c,d) = (ac,bd). Triedy ekvivalencie zlomkov s takto definovanymi operaciami tvoria
pole, ktoré sa nazyva podielové pole a oznacuje Q(D). Je to najmensie pole obsahujice obor
integrity D v tom zmysle, Ze ak je D vnorené do nejakého pola, tak toto vnorenie mozno
rozsirit na celé Q(D).

Toto som odpisal z [ASH].

Okruh zlomkov je podobna konstrukcia ako podielové pole. PretoZe nepracujeme s oborom
integrity, ale s lubovolnym okruhom, treba obmedzit mnoZinu pripustnych menovatelov, aby
sme nedostali v menovateli nulu. Dalej budeme predpokladat, Ze R je komutativny okruh.

Definicia 20. Nech S je podmnozina okruhu R. Hovorime, ze S je multiplikativna, ak 0 ¢ S,
leSaa,beS=abes.

Typické priklady:
S = mnozina vsetkych nenulovych prvkov oboru integrity,
S = mnozina vSetkych prvkov komutativneho okruhu, ktoré nie st delitelmi nuly,
S =R\ P, kde P je prvoideédl komutativneho okruhu R.
Ak S je multiplikativna podmnozina okruhu R, tak definujeme na R x S reldciu ekviva-
lencie
(a,b) ~ (¢, d) prave vtedy, ked pre nejaké s € S je s(ad — bc) = 0.

(Lahko sa overi, Ze je to relacia ekvivalencie, ked vyuzijeme komutativnost R. Vraj sa okruhy
zlomkov zavadzaji aj v nekomutativnom pripade, ale je to o dost obtiaznejsie.)

Zlomok ¢ potom definujeme ako triedu ekvivalencie dvojice (a,b). Mnozinu zlomkov
ozna¢ime ST'R. ST!R s prirodzene definovanym s¢itovanim a ndsobenim tvori komutativny
okruh. Ak R je obor integrity, tak takymto spésobom dostaneme podielové pole.

Tvrdenie 10. Nech f: R — S7IR, f(a) = a/1. Potom f je okruhovy homomorfizmus. Ak
S neobsahuje delitele nuly, tak f je prosté, ¢ize R mozno vlozit do S™'R.

Lamme si hlavu!
Salat

4 Polynémy

Rezultant. Vlastnosti polyndmov nad polom redlnych a komplexnijch cisel. Separdcia koreriov,
ohranicenie korernov, Sturmov systém. Numericky vypocet koreriov.
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4.1 Rezultant

Definicia 1. Nech f,g € F[z], f = ap2™ + a12" 1 + ... + an, g = boz™ + ... + by,. Potom
rezultant polynémov f a g je

a ay ... ap 0 0

0 ap a1 an 0

10 ... 0 a a1 ... an
RED=|p0 b . by 0 ... 0
0 by b b 0

0 0 by b bin

(pomocou polynému f je vytvorenych prvych m riadkov a pomocou g zvy$nych n riadkov)

Tvrdenie 1.

kde korene f si po rade a,. .., ou,.
Désledok 1. R(f,g) = 0 prdve vtedy, ked f a g maji spoloény korerl.

R(f, f') sa nazyva diskriminant f. Diskriminant je nulovy prave vtedy, ked f m& ndsobny
koren.

4.2 Vlastnosti polynémov nad polom reilnych a komplexnych é&isel

Veta 1 (Gaussova, Zakladna veta algebry). Pole C je algebraicky uzavreté.

Tvrdenie 2. Polynom f(x) s redlnymi koeficientmi je ireducibilng nad R prdve vtedy, ked
st f(z) = 1 alebo st f(x) = 2 a f(x) nemd redine korene, t.j. md dva zdruZené imagindrne
korene.

Tvrdenie 3. Majme f(z) = ap+a1x+...+a,a™ € Z[z] stuprian > 1. Nech % € Q, pricom
(p,q) =1. Ak % je koreriom f(x), tak p | ag a q | an v okruhu Z.
4.3 Ohranicenie a separacia korenov

Budeme sa zaoberat rovnicou

flx)=2"+az" ' +...+a,=0 (1)

Veta 2. Visetky redlne korene rovnice (1) s redlnymi koeficientmi leZia v intervale (—1 —
A1+ A), kde A = max{|ai|,...,|an|}.

Veta 3. Nech (1) je rovnica s redlnymi koeficientmi, pricom asponi jeden z koeficientov je
zdaporny. Predpokladajme, Ze ay je v poradi prvy zdporny koeficient. Nech B je najvicsia z
absolutnych hodnot zdapornych koeficientov rovnice (1). Potom kazdy redlny korer rovnice (1)
je mendi ako ¢islo 1+ /B.

Ak pouzijeme predchddzajicu vetu na polyném f(—z), tak dostaneme ohranicenie zdola.
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4.4 Sturmov systém

Majme rovnicu (1) s redlnymi koeficientmi. Predpokladajme, Ze polyném f(x) mé len
jednoduché korene. Sturmov retazec polynomov fo(z), f1(x), ..., fm(z) patriacich k polynému
f(z) sa zostroji takto: Polozme fo(z) = f(z) a fi(z) = Df(z) = f/'(x). Ostatné polyndmy
Sturmovho retazca ziskame zo vztahu f;(x) = fir1(2)git1(x) — fire(z). (Tento vztah uréuje
az na znamienko polyndémy vystupujice v Euklidovom algoritme. Teda stupne postupne
klesaju.)

Pod znamienkovou zmenou v postupnosti fo(c), f1(c), ..., fm(c) rozumieme pripad, ked
file).fix1(c) < 0alebo fi(c) =0a fi_1(c).fir1(c) < 0. (Viackrét za sebou tam 0 byt neméze.)

Veta 4 (Sturmova). Majme polynom f(x) s redlnymi koeficientmi a redlne ¢isla a < b. Nech
f(a) # f(b). Potom pocet redlnych koreriov rovnice (1) leZiacich v otvorenom intervale (a,b)
sa rovnd cislo Zn(a) — Zn(b). (Zn(c) znamend pocet znamienkovych zmien v postupnosti

f()(C), v ,fm(C).)
4.5 Numerické rieSenie

Newtonova metéda (metéda dotyénic) a metdda tetiv (regula falsi).
Pri Newtonovej metéde sa v [ATA] spomina tato veta (je tam bez dokazu).

Veta 5. Majme rovnice (1) s redlnymi koeficientmi a jednoduchymi korerimi. Nech rovnica
(1) md jediny koreri vnitri intervalu {a,b). Dalej predpokladdme, Ze f'(z) # 0 a f"(z) # 0
na celom intervale {a,b). Oznacme znakom cy to z ¢isel a, b, v ktorom f(c1).f"(c1) > 0.
Znakom dy oznacme druh€ éislo z ¢isel a, b, t.5. &islo v ktorom f(dy).f"(d1) < 0. Utvorme
postupnosti

€1, C2 =101 — fer) c3 =Cg — f(c2)
b f/(cl)’ f/(c2),- ..
fd) . f(ds) .

Fle) B Fiey

Potom jedna z postupnosti je klesajica, druhd rastica a obe postupnosti konverguji ku korenu
a.

Nikto nekrici: , Uz spime!“
Valkova

5 Konecné polia a kédovanie

Polyndmy nad konecngm polom, ich rozklad na sicin ireducibilnigjch polyndmov. Rozkladové
pole polynomu. Bezpecnostné kddy. Linedrne kody, Hammingove kody. Generujice polynomy
a cyklické kody.

5.1 Rozklad na sidin ireducibilnych polynémov

V tejto a v nasledujtcej Casti st odpisané nejaké veci z [ATA].
Okruhy polynémov - korei, delitelnost, NSD, Euklid, OHI

Veta 1. Majme polynom f(x) = ag+ ...+ apx™ v neurcitej x nad polom F. Nech a, #0 a
n > 1. Potom ezistuji polynomy p1(x),...,pm(x) normované a ireducibilné nad F a plati

f(l‘) = anpl(x) e 'pm(x)'
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Tento rozklad je jednoznacne uréeny aZ na poradie initelov.

Veta 2 (Eisensteinovo kritérium). Nech p je prvocisio a a(z) = apz™+an_12" 1 +.. . +ag
je polynom s celociselnymi koeficientami taky, Ze a, # 0(mod p) a ap—1 = ap—2=...a0 =
0 (mod p), ag Z 0 (mod p*). Potom a(z) je ireducibilnyg nad polom raciondlnych &isel.

5.2 Rozkladové pole polynému
Algebraické a transcendentné rozsirenia

Definicia 1. Nech F, L su polia, F C L. Prvok u € L sa nazyva algebraicky nad F, ak je
korefiom nejakého polynému z F[z]. Prvok u € L sa nazyva transcendentny nad F, ak nie je
koreniom ziadneho polynému z F[z].

Definicia 2. Pole L nazyvame jednoduchym algebraickym rozsirenim pola F' C L, ak existuje
prvok u € L, algebraicky nad F taky, Ze pole L = F(u) je generované mnozinou F' U {u}
(hovorime, Ze L je generované prvkom u nad F.) Ak u je transcendentny nad F, tak L = F(u)
nazyvame jednoduché transcendentné rozsirenie pola F.

Pole F(u) generované prvkom u m4 tvar
f(w)
FU)={—;QU)#0 :
( g(u) (

Z toho vyplyva nasledujtica iplna charakterizacia jednoduchych transcendentnych rozsireni.
Veta 3. Jednoduché transcendentné rozsirenie F(u) pola F je izomorfné s podielovgm polom
Q(Fx]) okruhu F[x] polyndmov jednej neurcitej nad F.

Rozkladové polia

Definicia 3. Rozsirenie L pola F' nazyvame rozkladoviym polom polyndmu f nad F, st f =
n > 0, ak existuji prvky ¢ € F, uy,ug...u, € L také, ze L = F(uy,...,u,) a f sadd nad L
rozlozit na stéin linedrnych éinitelov

f=clx—ur)...(x —uy).
Veta 4. Ak p je ireducibilng polynodm nad polom F, tak existuje jednoduché algebraické
rozsirenie F(u) generované koreriom u polyndmu p. (Je izomorfné s F/(p).)

Veta 5. Pre kazdy polynom f nad polom F, st f = n > 0 existuje rozkladové pole f nad F.
Je urcéené jednoznacne az na izomorfizmus.
Veta 6. Pre kazdé cislo tvaru q = p”, kde p je prvocislo, n > 0 prirodzené cislo, existuje
(okrem izomorfizmu) prdve jedno q-prvkové pole — je to rozkladové pole polyndmu x% — x nad
Zy.

Multiplikativnu grupu pola F' budeme znadit F™*.
Veta 7. Nech F je pole. Potom kaZdd podgrupa grupy F* s koneénym poctom prvkov je
cyklickad.

Veta 8. Nech F, je konecné rozsirenie konecného pola F,. Potom F, je jednoduché algeb-
raické rozsirenie a kaZdy primitivny prvok z F,. (generdtor E¥) je generdtorom rozsirenia F,
t.g. Fr. =2 F,(€). (€ je primitivny prvok.)

Daésledok 1. Pre kazdé n > 0 existuje ireducibilng polyndm nad Z, stupria n. (Je to mini-
mdlny polynom primitivneho proku z Fy, ¢ = p™. )
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5.3 Kodovanie

Literatura ku kédovaniu: hlavne [AD], ¢osi je aj v [JAB].

Definicia 4. Nech A, B st koneéné mnoziny, B* je mnozina vSetkych slov nad B, t.j.
B*={u=ej...ex;k € Ny, e; € B}. Potom injektivne zobrazenie k: A — B* sa nazyva kdd.
Prvky z k(A) sa nazgvaju kédové slova.

Kdéd k moZno rozsirit na zobrazenie k*: A* — B*. Ak k* je prosté zobrazenie, hovorime
o jednoznacéne dekddovatelnom kédovani.

Ozna¢me B™ mnozinu vSetkych slov nad B dlzky n. Kéd k: A — B™ sa nazjva blokovy
kdd dlzky n.

Veta 9. Nech n = |B| > 2, nech A = {ay,...,a,}. Nech dy,...,d, si po rade predpisané
dlzky kodovijch slov pre ai,...,a,. Nech dy < ... < d,. Potom sa dd zostrojit prefizovy kdd
prave vtedy, ked plati Kraftova nerovnost n=% 4+ ... +n~% < 1.

Veta 10 (McMilan). Kazdy jednoznacne dekddovatelny kod splia Kraftovu nerovnost
nTh 4 <,

kde d; si dizky vsetkych kddovych slov a n = |B|.

Bezpecnostné kédy

Definicia 5. Hovorime, Ze v slove do$lo ku t-ndsobnej chybe, ak prijaté slovo sa lisi od
vyslaného slova na nanajvys ¢t miestach. Hovorime, Ze kdéd objavuje t-ndsobné chyby, ak pri
vyslani kédového slova doslo ku t-nasobnej chybe, tak prijmeme nekédové slovo.

Definicia 6. Nech T je abeceda a u,v € T". d(u,v) = ||u —v|| = [{i : u; # v;}| sa nazyva
Hammingova vzdialenost u a v.

Hammingova vzdialenost je metrika.

min{d(u,v);u # v;u,v € k(A)} sa nazyva minimdlna vzdialenost kddu.

Veta 11. Nech k: A — T"™ je blokovy kod minimdilnej vzdialenosti d. Potom k objavuje
t-ndsobné chyby pre t < d, k nie je schopny objavit d-ndsobné chyby.

Definicia 7. Hovorime, Ze kéd opravuje t-ndsobné chyby, ak po vyslani v € k(A) a prijati
w € T™ s vlastnostou d(v, w) <t plati d(v, w) < d(z,w) pre vSetky x € k(A), z # v.

P . . . d
Veta 12. Blokovy kdd minimdlnej vzdialenosti d opravuje chyby pre t < 5.

Definicia 8. Nech k: A — T" je blokovy kéd. Ak existuje I < n a bijekcia ¢: T —
k(A), hovorime, Ze k ma I informacéngch a n — 1 kontrolngch znakov. ¢ sa nazyva kédovanie
informacnych symbolov.

Blokovy kéd k(A) C T™ je systematicky, ak existuje &islo I < n, ze kazdéslovo vy ...v; € T"
mozno jednoznac¢ne predlzif na nejaké kédové slovo.

Veta 13. Nech k: A — T" je systematicky, pricom md l informacnych symbolov. Potom
d<n-—-1Il+1.

23



Linearne kédy

Definicia 9. Linedrny kdd je podpriestor vektorového priestoru (F, F™), kde F' je konec¢né
pole. (tzv. linedrny (n,r)-kéd, kde r = dim(k(A))).

Generujica matica linedrneho kédu je matica G, ktorej riadky tvoria bazu podpriestoru
k(A).

Linearny kéd k(A) je systematicky, ak ma generujicu maticu G = (IxG’)kxn. Aby sme
zistili, ¢i kdd s danou generujicou maticou je systematicky, upravime ju na redukovany troju-
holnikovy tvar. (Pomocou elementarnych riadkovych operécii z generujicej matice dostaneme
generujicu maticu toho istého kédu.)

Definicia 10. Kédy k1, ks C F™ st ekvivalentné, ak existuje permutécia stipcov G, ktorou
dostaneme generujucu maticu Ga.

Definicia 11. Nech K je linedrny (n, k)-kéd. Matica B nad polom F' sa nazyva kontrolnd
matica kédu K, ak

BGT =0,GBT =0
Pre u,v € F™ definujme
U*V:=ULVL + ...+ UpUp.
Veta 14. Nech K je linedrny (n,k)-kod nad konecngm polom F. Potom K+ = {v € F" :
uxv=0VYu € K} je podpriestor F" a dim(K+) =n —k, t.j. K+ je linedrny (n,n — k)-kdd.
K+ woldme dudlny podpriestor/dudlny kod ku K.
Generujica matica kddu K je kontrolnou maticou kédu K+ a obrdtene.

Definicia 12. Hammingova vdha slova v = v; ...v, € F" je pocet nenulovych zloziek slova
v. o]l = [{i: v # 0}

Lema 1. Nech K C F" je linedrny kdd a d je jeho minimdlna vzdialenost. Potom d =
min{||w|| : w € K — {0}}.

Veta 15. Linedrny kdd objavuje t-ndsobné chyby prdve vtedy, ked kaZdijch t stlpcov jeho
kontrolnej matice je linedrne nezdvislych.

Veta 16 (o Standardnom dekdédovani). Nech K je (n, k)—linedrny kdd nad polom F.
Nech €' € e + K je slovo s najmensou vihou v triede ekvivalencie e + K. e’ budeme volat
reprezentantom triedy e + K. Potom zobrazenie 6: F™ — K definované vztahom 6(w) =
w—reprezentant triedy (w + K), t.j. 6(w) = w — €’ je dekddovanie. Voldme ho $tandardné
dekdédovanie.

Standardné dekodovanie opravuje prdve tie chybové slovd, ktoré sme zvolili za reprezen-
tantov. Navyse Ziadne dekddovanie neopravuje vicsiu mnozZinu slov ako §.

Veta 17. Nech H je kontrolnd matica linedrneho (n, k)—kddu K nad F. Potom e+ K = ¢+ K
& Hel = He'T.

Definicia 13. Nech H je kontrolné matica linearneho kédu K C F™. Nech
vy 51
HI: |=
Up, Sn
Potom slovo s = s7 ... s, sa vola syndrom slova v =wv1 ...v,.

Standardné dekédovanie mozno urychlit pomocou syndrémov, ak vopred vypocitame ta-
bulku popisujicu, ktory reprezentant zodpovedd ktorému syndrému.
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5.4 Hammingove kédy

F =75 - ide o binarny kdéd.
(7,4)-linedrny kéd

000 1111
H=(0 1 1 0 0 1 1
1 01 01 01
Reprezentanti st e; az e7, syndrém pre e; je zapis ¢ v dvojkovej ststave. Pre Hammingove

kédy je jednoduchy vypocet syndréomu aj vyber reprezentanta.

Veta 18. Bindrny linedrny kod opravuje jednoduché chyby prdve vtedy, ked stlpce jeho kon-
trolnej matice su nenulové a navzdjom rozne.

Definicia 14. Binarny kdd sa nazyva Hammingov, ak jeho kontrolnd matica mé k riadkov,
2% — 1 nenulovych stipcov a ziadne 2 stipce nie st rovnaké. Je to (2F —1,2F — k — 1)-kéd.

Rozsireny Hammingov kéd vznikne ak priddme navysSe kontrolu parity, t.j. v1 + ... +
vagm_1 + vam = 0. (Zodpoved4d doplneniu riadku pozostévajiceho zo samych jednotiek do
kontrolnej matice.)

5.5 Perfektné kody

Definicia 15. Linearny kéd sa nazyva perfekiny pre t-nasobné opravy, ak jeho reprezen-
tantmi st vsetky slova vahy mensej alebo rovnej t.

Veta 19. Hammingove kody su perfekiné pre jednoduché opravy.
Ak nejaky kod je perfektny bindrny linearny kod na opravu jednoduchych chyb, tak je to
Hammingov kod.

Veta 20 (Jietdvaismen, Van Lint). Jediné netrividlne perfektné kddy (aZ na ekvivalenciu)
su tieto:

(i) Hammingove kddy pre jednoduché chyby,
(i1) Golayov kdd pre trojndsobné chyby

(iii) opakovacie kddy dizky 2t + 1 pre t-ndsobné chyby.
5.6 Cyklické kédy

Definicia 16. Linearny kéd K C F™ je cyklicky, ak vg...v,—1 € K = vp_1v9...0,_2 € K.
V=1g...0_1 < f(x) =vo +viT+ ...+, 12"t

Veta 21. Nech F je konecné pole. Potom linedrny kod K C F™ je cyklicky prdve vtedy, ked
K je idedlom okruhu (F™,+,*) = Flx]/(z™ —1). (x je ndsobenie modulo ™ — 1, t.j. x x f(x)
predstavuje posun dolava)

Veta 22. Kazdy netrividlny cyklicky (n, k)-kdd obsahuje polynom g(x) stupria n — k a plati:
(i) K je hlavng idedl v F™ generovany polyndmom g(x).

K:{fan;f:g*h,hEFn}:(g)
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k=14 g(x) tvoria bdzu K.

(ii) Polynomy g(z),z * g(z),...x
(ii) g(x) | 2™ — 1 v okruhu F[z].

Takyto polynom g(x) voldme generujicim polynémom cyklického kddu.

G=|"
: . . . 0
0 ... 0 90 g1 - Gn-k

Definicia 17. Nech 2" —1 = g(x).h(z) v Flz] anech K C F" je cyklicky kdd s generujicim
polynémom g¢(z). Potom h(x) volame kontrolnym polynémom kédu K.

0 ... ... 0 hr ... h1 ho
0 ... 0 hg ... h1 ho O
H= ..
0 hyg hi ho O 0
Iy, hi ho O 0

Bez toho, aby sme vela museli rozmyslat. Lebo tam jedn4 sa o toto.
Katrindk

6 Grafy a ich zakladné vlastnosti

Grafy a ich zdkladné vlastnosti. Minimdlna cesta v grafe, algoritmus na minimalnu kostru.
Fordov-Fulkersonov algoritmus, Hallova veta. Linedrny faktor, zloZitost algoritmov. Problém
obchodného cestujiceho. Problém cinskeho postdra.

Pri priprave tejto otazky sa okrem poznamok z predmetov Tedria grafov a Linedrne
programovanie a grafové algoritmy pouzila aj kniha [PL].

6.1 Grafy a ich zakladné vlastnosti

Graf - (V, E)

KySova terminolégia: Graf = neorientovany, pseudograf = priptstaju sa slucky, multigraf =
aj paralelné hrany.

Digraf = aj orientcia hran (F je mnozina usporiadanych dvojic)

orientovany graf = taky, ktory ziskame z obyc¢ajného grafu doplnenim orientacie hran

U Plesnika bola terminolégia podobna, ibaze multigraf nemal slucky a v pseudografe boli
povolené. Migraf bol graf, ktory mal orientované aj neorientované hrany.

izomorfizmus grafov, stupen vrchola

Podgraf, indukovany podgraf (indukovany mnozinou vrcholov), faktor (podgraf s rovnakou
mnozinou vrcholov ako mé cely graf)

kompletny graf

turnaj = kompletny asymetricky digraf

regularny graf stupna k, regularny digraf stupna k = vchadzajici aj vychadzajici stupen
kazdého vrchola je k

sled, fah (neopakuju sa hrany), cesta (neopakujt sa vrcholy)
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uzavrety sled, uzavrety tah, kruznica (cyklus)
suvisly graf, komponenty
excentricita, polomer, priemer, centrum
bipartitny graf

Nevedel som, kde dat Mengerovu vetu, ale zdalo sa mi, Ze je dost dolezité, takZe niekde
by byt mala. Zatial som ju dal sem. (Separator som nedefinoval, to sa sndd da domyslief z
kontextu.)

Veta 1 (Menger—hranova verzia pre digrafy). Ak u, v si 2 rézne vrcholy digrafu D,
tak mazimalny pocet hranovo disjunktnych u—v ciest v D sa rovnd poctu hrdn minimového
u-v hranového separdtora.

Veta 2 (Menger—hranova verzia pre grafy). Ak u, v sid 2 rozne vrcholy grafu G, tak
mazimdlny pocet hranovo disjunktnych u—v ciest v G sa rovnd poctu hrdn minimového u—v
hranového separdtora.

Veta 3 (Menger—vrcholova verzia pre digrafy). Ak u, v si 2 rozne vrcholy digrafu
D, uv ¢ E(D), tak mazimdlny podet vrcholovo disjunktngch u—v ciest v D sa rovnd podtu
vrcholov minimového u—v vrcholového separdtora.

Podobne vyzera vrcholova verzia pre grafy.
6.2 Hladanie najkrat3ej cesty
Uloha: Najst cestu z s do ¢ s minimalnym st¢tom ohodnoten.
Moorov algoritmus

Moorov algoritmus riesi ttto tlohu v pripade, Ze kazda hrana ma ohodnotenie ¢;; = 1.
Vzdy priddvame vrcholy, do ktorych sa da dostat z tych, ktoré sme priddvali v poslednom
kroku. Kazdy vrchol dostane znacku len raz, ¢ize sta¢i O(m + n) operécii. (tzv. postup do
sirky)

Dijkstrov algoritmus

Dijkstrov algoritmus predpokladd, ze c;; > 0.
S = vrcholy s trvalou znackou
S = vrcholy s do¢asnou znackou
Na zadiatku S = {s}, vidy pre vrchol v € S udrziavame v jeho znacke dlzku minimalnej
cesty do v cez vrcholy patriace do S a posledny vrchol tejto cesty. (Na zaciatku sa znacky
inicializujt tak, Ze s mé znacku 0 a ostatné vrcholy co.) V kazdom kroku priddvame vrchol
z S, ktory ma najmensiu znacku.

Zlozitost: O(n?). (D4 sa pouzitim haldy zmodifikovat na O(mlgn).)

6.3 Algoritmus na minimalnu kostru

Strom = suvisly acyklicky graf.

Faktor savislého grafu, ktory je stromom, nazveme kostrou.

Ak V7 C V, tak mnozinu vSetkych hran, ktorych jeden koncovy vrchol patri do V7 a druhy
do V'\ V4 nazveme hranovy rez.

Veta 4. Hrana e patri do minimdlnej kostry prdve vtedy, ked e je najlacnejsou hranou neja-
kého rezu.
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VSeobecny spajaci algoritmus (Tarjanov)

Vzdy méme zostrojeny les (na zaciatku si vSetky stromy jednobodové). Vyberieme nie-
ktory z doteraz vytvorenych stromov a priddme najlacnejsiu hranu idacu z tohto stromu do
iného stromu.

Primov algoritmus

Vzdy vyberieme najvicsi strom (teda vlastne budeme mat len jeden strom) a priddme
najlacnejsiu hranu, ktord z neho vychddza. Zlozitost: O(n?). Ak si pre vytvoreny strom
pamitame najlacnej$iu hranu, ktortt mdZeme pridat a po kazdom kroku tuto informdciu
aktualizujeme, mozeme ziskat O(n?) algoritmus.

Kruskalov algoritmus

Usporiadame hrany vzostupne podla ceny a potom ich v takom poradi postupne pri-
davame, pri kazdom priddvani hrany testujeme, ¢i nevznikne cyklus. Usporiadanie trva
O(mlgm) a detekcia sa d4 robif v ¢ase O(mlgn) (spolu cez vSetky hrany).

6.4 Siete a toky

Siet = digraf, v ktorom st vyznacené zdroj s, ustie t a kazdej hrane je priradené celé ¢&islo
- kapacita hrany.
Tok je funkcia f: E — R taka, ze

(i) 0< f(a) < c(a),
i > flry)= > [flyx)prex#st

yENT(z) yEN ()

s-t rez je taky rozklad vrcholovej mnoziny na dve mnoziny S a T, ze s € S, t € T.
Kapacita rezu b(S,T) = stcet kapacit vSetkych hran, ktoré maju pociatoény vrchol v S a
koneény v T.

Veta 5. Nasledujice vyroky siu ekvivalentné:
(i) f je maximdlny s —t tok.
(i1) Neexistuje zvicsujica s —t polocesta.

(iii) Existuje s —t rez (S,T) taky, Ze v(f) = b(S,T), kde v(f) oznacuje velkost toku f, t.j.
o(f) = ZyeN+(S) f(s,y) — ZyGN*(s) f(y,s).

Désledok 1. Nech N je siet definovand na digrafe D s istim t a zdrojom s. Potom velkost
mazimdlneho s — t toku sa rovnd kapacite minimdlneho s — t rezu.

Nasledujtce vety sa daju dokazovat aj pomocou tokov.

Veta 6 (Hall). Systém rozliéngch reprezentantov mnozin Si,..., S, ezistuje prive vtedy,
ked zjednotenie lubovolnych k mmnozin md aspori k prvkov.

Veta 7 (Konig, Egervary). Mazimdlny pocet nezdvislych hrdn pdrneho grafu sa rovnd
minimdlnemu poctu vrcholov, ktoré pokryji vsetky hrany grafu.
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Fordov-Fulkersonov algoritmus

Vlastne len oznacujeme vrcholy, do ktorych sa da dostat po rezervnych (zvéésujtcich) po-
stup opakujeme. V pripade celoéiselnych kapacit algoritmus musi skon¢it. Fordov-Fulkersonov
algoritmus nie je polynomidlny, hoci sa v praxi ukazuje pomerne rychly.

6.5 Linearny faktor

Definicia 1. Faktor grafu = podgraf, ktory obsahuje vSetky vrcholy.
r-faktor = faktor, ktory je regularny stupna r.
Nepdrny komponent grafu = komponent, ktory mé neparny pocet vrcholov.

Veta 8 (Tutte). Graf G(V, E) md 1-faktor < ak pre kaZdi podmnoZinu S mnoziny V(G)
je pocet nepdrnych komponentov grafu G — S nagviac |S|.

Parenie

Dve hrany st nezdvislé, ak nemaja spolo¢ny vrchol. Pdrenie je mnozina nezavislych hran
grafu G.
maximalne parenie, najpocetnejsie parenie
kompletné parenie = perfektné parenie — obsahuje vsetky vrcholy
Volny vrchol= nie je koncovy vrchol ziadnej hrany parenia.
Alternujica cesta je cesta, ktorej hrany striedavo patria a nepatria do parenia. Alternujtca
cesta sa nazyva zvdcsujicou cestou, ak koncové vrcholy st volné vzhladom na dané parenie.

Veta 9 (Berge). Pdrenie M v grafe G je najpocdetnejsie < ak v G nie je zvicsujica polocesta
vzhladom na M.

6.6 Zlozitost algoritmov

= O(f(n)), ak existuji ng a c také, ze pre n > ng je g(n) < cf(n).
(n) = linedrna zlozitost

(Ign) = logaritmicka zlozitost

( = polynomialna zlozitost

(a™) = exponencidlna zlozitost

6.7 TUloha &inskeho po$tara a tiloha obchodného cestujiiceho
Uloha ¢&inskeho postara

eulerovsky sled = uzavrety sled obsahujuci vsetky hrany a vrcholy

Uloha: V danom silne stvislom grafe G, kde kazda hrana méa realnu dlzku cij > 0, treba
najst najkratsi eulerovsky sled. (Postar mé prejst vSetky ulice mesta.)

V eulerovskom grafe je riesenim Ifubovolny eulerovsky tah. Inak treba nasjt poparovanie
vSetkych vrcholov neparneho stupnia pomocou ciest, tak aby sicet ohodnoteni tychto ciest
bol minimalny. (Nech Vi je mnoZina vrcholov neparneho stupiia. Pre u,v € Vi ndjdeme
najkratsiu cestu. Na V; vytvorime kompletny graf s ohodnotenim d,,= miniméalna dizka
u — v cesty. V takomto grafe sa vytvori najlacnejSie parovanie - na to existuje algoritmus.
Hrany z tohoto parenia priddme k povodnému grafu. Eulerovsky fah v takto ziskanom grafe
zodpovedd najlacnejsiemu eulerovskému sledu v pdvodnom grafe.)
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Uloha obchodného cestujiiceho

V grafe s nezdpornymi realnymi ohodnoteniami hran néajst najkrat$i hamiltonovsky cyk-
lus. Je to NP-tazky problém.

No tak nebudeme si to pisat. .., ale napiSeme si to.
Gliviak

7 Rovinné a hamiltonovské grafy

Rovinné grafy, Eulerova rovnost. Farbenie grafov, veta o piatich farbdch. (KruZnice v grafoch,
hamiltonovské idedly, Chvdtalova veta. Stabilita a uzdver grafov. Hamiltonovské kruznice a
zakdzané podgrafy. Hamiltonovské kruznice a hranové grafy eulerovskych grafov.) [Ramseyho
problém, Hamiltonovské problémy. Oreho veta.]

Po aktualizicii Statnicovych otdzok bola vynechana ¢ast v zatvorke a pribudli Ramseyho
problém, Hamiltonovské problémy a Oreho veta. Hamiltonovské problémy a Oreho veta st v
tejto otazke. Ramseyho som nechal v 9. otazke, kde bol povodne.

7.1 Planarne (rovinné) grafy

Definicia 1. Plandrne (rovinné) grafy su grafy, ktoré sa daji vnorit do roviny. (Ekvivalentnd
podmienka je, ze graf mozno vnorit do gule.)

Stena planarneho vnorenia obsahujtica bod z disjunktny s G je mnozina vsetkych bodov
roviny, ktorit je mozné spojit s x krivkou pozostdvajicou len z bodov disjunktnych s G.
Hranica steny je mnozina vSetkych bodov x grafu, ktoré je mozné spojit s lubovolnym bodom
steny krivkou, ktorej vSetky body okrem z st disjunktné s grafom. DiZka hranice je pocet
hran hranice danej steny, pricom ak je hrana mostom, tak sa pocita dvakrat.

Veta 1 (Euler). Pre suvisly plandrny graf plati
p—q+r=2,

kde p je pocet vrcholov, q je pocet hrin a r je pocet stien. (Alebo, ak sa vam to tak lepsie
pamitd, v —h+s=2.)
Ak je plandrny graf G nesivisly a md k(G) komponentov, tak p —q+r =1+ k(G).

Eulerova veta sa dokéze indukciou vzhladom na pocet hran grafu na n vrcholoch.

Existuje prave 5 typov pravidelnych mnohostenov (Stvorsten, kocka, 8-, 12- a 20-sten.)

Pre pocet hran planarneho grafu plati ¢ < 3p — 6. Ak neobsahuje trojuholnik, tak ¢ <
2p — 4. (Pomocou tychto nerovnosti moézeme overit, ze K3 3 a K5 nie st plandrne. Tiez z nich
vyplyva, Ze kazdy rovinny graf musi obsahovat vrchol stupria nanajvys 5.)

Definicia 2. G; a G5 st homeomorfné, ak s izomorfné alebo obidva grafy mozno dostat z
toho istého grafu G postupnym opakovanim operacie delenia hran.

Ekvivalentnd definicia: S izomorfné alebo jeden moZno dostat z druhého opakovanim
operacii delenia hrany alebo odstranenia vrchola stupna 2.

Veta 2 (Kuratowského). Graf je plandrny prdve vtedy, ked neobsahuje podgraf home-
omorfny s K5 alebo K3 3.

Veta 3 (Wagner, Tutte, Harary - duilna Kuratowského). Graf je plandrny prdve
vtedy, ked nemd podgraf, ktory sa dd stiahnut elementdrnou redukciou (t.j. spdjanim sused-
nych vrcholov) na Ks alebo Ks 3.

30



7.2 Farbenie grafu

X(G) = chromatické ¢islo = minimalny pocet farieb, ktorymi sa d4 ofarbif G tak, aby kazdé
dva susedné vrcholy mali roznu farbu.

X(G) > w(G) (w(G) =klikové ¢islo = velkost najviésieho kompletného podgrafu)

X(G) <1+ A(G)

Tvrdenie 1 (Szekeres, Will). Pre lubovolny graf G plati

< !
X(G) <1+ max (G),

kde mazimum sa berie cez vietky indukované podgrafy G' grafu G.

Veta 4 (Brooks). Nech G je suvisly graf s mazimdlnym stupriom A. Nech G nie je kom-
pletng ani nepdrny cyklus (alebo: G nie je kompletng a A > 3). Potom x(G) < A.

Veta 5 (Gallai). x(G) <1+ m(G), kde m(G) je dizka najdihsej cesty v G.

Veta 6 (Kelly, Zykov). % < x(G) <p—pF+1, kde 8 je mohutnost najvicsej nezdvislej
mnoziny vrcholov.

Tvrdenie 2. Ak G neobsahuje Py ako indukovany podgraf, tak x(G) = w(QG).
Veta 7. Pre lubovolné kladné celé n existuje n-chromaticky graf bez trojuholnikov.
Veta 8 (4CT). KaZdy plandrny graf mozno ofarbit 4 farbami.

Veta 9 (5CT). Kazdy rovinng graf je 5-farbitelny.

Dokaz. Nech p je najmensie také, ze to neplati a nech G je rovinny graf na p vrcholoch, ktory
nie je 5-farbitelny. V G existuje vrchol stupiia najviac 5 (to vyplyva z odhadu pre pocet hran
rovinného grafu ¢ < 3p — 6). Po vynechani tohto vrchola v dostaneme 5-farbitelny graf. Hy 3
oznacime podgraf indukovany vrcholmi farieb 1 a 3. Ak v; a v3 nie st spojené v Hj 3 cestou,
tak mozeme zamenit farby 1 a 3 v komponente obsahujicom v;. V opac¢nom pripade nebudu
spojené cestou ve a v4 v Hy 4. O

Farbenie hran

X1(G) - chromaticky index = najmensi pocet farieb, ktorymi je mozné ofarbit hrany G
tak, aby susedné hrany nemali rovnaku farbu.

Veta 10 (Vizing). Ak G je neprdzdny, tak A(G) < x1(G) < A(G) + 1.
Grafy moézeme rozdelit do 2 tried: x1(G) = A(G) (trieda 1) a x1(G) = A(G) + 1 (trieda
2). Erdés a Wilson ukazali, ze P(G € Trieda 1) — 1, t.j. skoro kazdy graf je z triedy 1.
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Tvrdenie 3. x1(Kp,n) = A = max(m,n).
Veta 11 (Ko6nig). Ak G je parny, tak x1(G) = A.

Veta 12. Kazdd kubickd mapa (t.j. plandrny graf s degv = 3 pre vsetky v € G) sa dd hranovo
ofarbit 8 farbami < plati 4CT.

7.3 Eulerovské a hamiltonovské grafy
Eulerovské grafy

Veta 13. Pre suvisly graf su nasledovné tvrdenia ekvivalentné:
(i) G je eulerovsky (md eulerovsky cyklus).
(ii) Kazdy vrchol G je pdrneho stupria.

(i) G je zjednotenim hranovo disjunktnych kruznic.
Hamiltonovské grafy

Graf voldme hamiltonovsky, ak obsahuje hamiltonovski kruznicu. Problém najst v grafe
hamiltonovsku kruznicu, resp. zistif, ¢i je dany graf hamiltonovsky, je NP-tplny.

Nutna podmienka, aby bol graf hamiltonovsky: Pre kazdd podmnozinu S C V(G) je pocet
komponent G\ S ¢(G\ S) < |S]. (Ako désledok dostaneme, Ze kazdy hamiltonovsky graf je
2-suvisly.)

Veta 14 (Dirac). Ak minimdlny stuper grafu je & (p je pocet vrcholov), tak je to hamilto-
novsky graf.

Veta 15 (Ore). Ak G je graf s p vrcholmi (p > 3) taky, Ze pre kaZdi dvojicu nesusedngch
vrcholov u, v plati
degu + degv > p,

tak G je hamiltonovsky.

Veta 16 (Bondy-Chvéatal). Nech u, v st dva rézne nesusedné vrcholy grafu G s p vrcholmi
také, zZe degu + degv > p. Potom G + uv je hamiltonovsky < G je hamiltonouvsky.

Pri dokaze Bondy-Chvéatalovej vety si stac¢i uvedomit, Ze musi existovat modifikujica
dvojica hran

.....

priddm medzi nimi hranu. G je hamiltonovsky < jeho uzaver ¢(G) je hamiltonovsky.
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7.4 Hamiltonovské idealy

Definicia 3. Nech S = (di,...,d,) je postupnost celych nezdpornych éisel. Postupnost S
nazveme grafovou, ak existuje graf G taky, ze V(G) = {v1,...,v,}, d;i = degv; pre kazdé i.

Uvazujme o grafe G, kde |V(G)| =n, S = (d1,...,dpn), d1 < ... < d,.

Definicia 4. Grafovi postupnost S nazveme silne hamiltonovskou, ak kazdy graf s touto
postupnostou je hamiltonovsky.

degv > n Yo e V(QG) (D)
2
-1 -1 -1
[{v;degv < j}| < jpre j < z , ak n je neparne |{v;degv < nT}| < 5 (P)
(jgk',djSj,dkgk'—l)idj-i-dkzn (B)
dj§j<§:>dn,j2nfj (CH)

(D) = Diracova podmienka, (P) = Pdsova, (B) = Bondyho, (CH) = Chvéatalova
(D) = (P) = (B) = (CH)

Oznac¢me S,, = neklesajice grafové postupnosti dizky n, H,, = hamiltonovské postupnosti
dizky n.

Definicia 5. Nech S, S* st prvky S,,. Hovorime, ze S* dominuje S (oznacujeme S* > S)
ak pre kazdé i je d; < df. (Sp, <) je ¢iastoéne usporiadand mnozina.
P C S,, nazveme idedlom, ak plati (x € P,x <y) =y € P.

H,, netvoria ideél v S,,.

Veta 17. Ak S nevyhovuje podmienke (CH), tak existuje S* takd, e S* > S a S* nie je
hamiltonovskad.

Dosledok 1. Najuicsi idedl P* v mnozZine silne hamiltonovskych postupnosti obsahuje len
také postupnosti, ktoré vyhovuju (CH).

Postupnosti spliiajiice Oreho podmienku netvoria ideal. Ak graf spliia Oreho podmienku,
tak spliia aj Chvatalovu.

Veta 18 (Chvatal). Nech G je graf rddu n s postupnostou stupriov vrcholov di < ... <d,
spliiajiicou (CH). Potom G je hamiltonovsky.

7.5 Hamiltonovské kruznice a zakazané podgrafy

Veta 19 (Tutte). Kazdy 4-sdvisly plandrny graf je hamiltonovsky.

Definicia 6. Graf nazveme H -volnjj, ak neobsahuje indukovany podgraf izomorfny s H. Graf
G nazveme lokdlne suvisly, ak okolie kazdého vrchola v € V(G) indukuje savisly graf.

Veta 20 (Oberty, Summer). Nech G je graf radu n > 3, suvisly a lokdlne sivisly, K1 3-
volny. Potom G je hamiltonovsky.
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7.6 Hranové grafy a hamiltonovské kruznice

Definicia 7. Graf G nazveme hranovym grafom grafu H, ak plati V(G) = E(H), E(G) =
{(e, f),en f # 0 v grafe H,e # f}. Oznacujeme G = L(H).

Tvrdenie 4. G 2 L(G), G je suvisly < G = Cy,.
Nech G, G' su suvislé grafy, L(G) = L(G"). Potom G = G’ okrem pripadu G = Cj,
G = K1,3.

Veta 21 (Beineke). Graf G je hranovym grafom prdave vtedy, ked neobsahuje indukovany
podgraf izomorfny s K13, Fa, ..., Fy. (Teda kaZdy hranovy graf je K1 3-volny.)

Veta 22. Graf G je hranovym grafom prave vtedy, ked existuje rozklad E(G) na kompletné
podgrafy tak, Ze kazdy v € V(Q) patri do najviac dvoch.

Veta 23. Nech G je suvisly graf. Potom G je hranovy graf eulerovského grafu prdve vtedy,
ked existuje rozklad E(G) na kompletné podgrafy parneho radu (kazdy kompletny podgraf md
pdrny pocet vrcholov) tak, Ze kaZdy vrchol v € V(G) patri do prdve dvoch.

Tvrdenie 5. Hranovy graf eulerovského grafu je hamiltonovsky.

Désledok 2. Ak stvisly graf md rozklad s vlastnostami uvedengmi vo vete 23, potom G je
hamiltonovsky.

A na tom dokaze uvidite, ¢o dokazeme.
Salat

8 Grupy automorfizmov grafu

(Grupy automorfizmov grafu, vrcholovo a hranovo tranzitivne grafy. Fruchtova veta. Charak-
terizdcia vrcholovo tranzitivnych grafov. Cayleyho grafy. Konstrukcia vrcholovo tranzitivnych
grafov, ktoré nie si Cayleyho grafmi. Cirkulantné grafy a hamiltonovské kruZnice.)

Definicia 1. Nech G = (V, E) je graf. Automorfizmom grafu G rozumieme kazda bijekciu
©: V. — V s vlastnostou (u,v) € E prave vtedy, ked (¢(u),¢(v)) € E (t.j. izomorfizmus
grafu na seba).

Veta 1. Vsetky automorfizmy grafu G tvoria grupu vzhladom na operdciu skladania zobra-
zend, oznacujeme ju Aut(G).

Plati Aut(G) = Aut(G). Pre Petersenov graf je Aut(P) = Ss.

Definicia 2. Na mnozine vrcholov V' definujeme reldciu ekvivalencie ~ tak, 7ze u ~ v &
p(u) = v pre nejaké ¢ € Aut(G). Triedy rozkladu 0(u) = {¢(u); ¢ € Aut(G)} sa nazyvaji
orbity grupy Aut(G).

Ak Aut(G) = {id}, ¢ize kazda orbita je jednoprvkova, hovorime, ze G je vrcholovo an-
tisymetricky. Ak existuje jedind orbita, hovorime, Ze G je vrcholovo symetricky (vrcholovo
tranzitivny).

Definicia 3. Kazdy automorfizmus ¢ € Aut(G) indukuje bijektivne zobrazenie ¢': E — E.
Iy ={¢';¢ je indukované automorfizmom ¢} je hranovd grupa automorfizmov G.

Veta 2. Aut(G) 2 T'1(G) prdve vtedy, ked G neobsahuje Ko ako komponentu sivislosti a md
najviac jeden izolovany vrchol.
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Definicia 4. Graf G nazveme hranovo tranzitivny, ak pre kazdé dve hrany e, f € E existuje
¢ € T'1(G) tak, ze ¢'(e) = f.

Veta 3. Nech G je hranovo tranzitivny graf bez izolovanych vrcholov. Potom G je vrcholovo
tranzitivny alebo G je bipartitng a jeho biparticia je tvorend dvoma vrcholovymi orbitams.

Dosledok 1. Nech G je hranovo tranzitivny graf, nepdarneho rddu, requldrny stupria d > 1.
Potom G je vrcholovo tranzitivny.

(€]

Désledok 2. Nech G je hranovo tranzitivny graf, requldrny stupria d > . Potom G je

vrcholovo tranzitivny.

Veta 4 (Frucht). Pre kazdu konecni grupu I existuje graf G taky, Ze T' = Aut(G).
8.1 Cayleyho grafy

Definicia 5. Nech I je grupa, S C T, 1¢ S, S = S~! (S je uzavretd vzhladom na inverzné
prvky). G = C(T, S) je graf s V(G) =T a E(G) = {(u,v) : u"*v € S}. Graf G nazyvame
Cayleyho graf grupy I' vzhladom na S.

Veta 5. Cayleyho graf C(T,S) je
(i) kompletny graf < S =T\ {1},
(ii) sdvisly graf < S generuje T.
Veta 6. Cayleyho graf C(T',S) je vrcholovo tranzitivny.
Petersenov graf nie je Cayleyho graf, ale je vrcholovo tranzitivny.

Sedim, sedim, az vysedim.
Tomanova

9 Extremalne ulohy

(Turdnova veta, konecny pripad Ramseyovej vety. Grafové Ramseyove ¢isla, Chvdtalova veta,
R(K'ran) = (m - 1)(” - 1) + 1')

9.1 Turanov problém

a(Q) - ¢islo nezavislosti grafu G - je pocet hran najvicsej nezavislej mnoziny vrcholov G.
E(n, k) - minimalny pocet hran grafu na n vrcholoch s a(G(n, k)) < k.

Veta 1. Grafy G(n, k) s minimdlnym pocétom hrdin E(n, k), kde 3 < k < n sd tvaru G(n, k) =
G1UGaU...UGk_1. Akn=t(k—=1)+r, 0 <r < k—1, tak r z grafov G; st K¢11 a zvysné
st Kt-

Veta 2 (Turan). Ezistuje jeding graf radu n > 3, ktory neobsahuje podgraf Ki, 3 <k <n
a md mazximdlny pocet hrdn.
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9.2 Ramseyove Cisla

Nech p,q > 2 st celé ¢éisla. Cislo N > 0 nazveme (p, g)-ramseyovské, ak pre fubovolny
rozklad mnoziny vSetkych dvojprvkovych podmnozin mnoziny S (S je N-prvkova) na dve
Casti X, Y existuje p-prvkova podmnozina mnoziny S taka, ze vSetky jej dvojprvkové pod-
mnoziny patria do X alebo existuje g-prvkova podmnozina S taka, ze vSetky jej dvojprvkové
podmnoziny patria do Y.

Veta 3 (Ramsey). Nech p,q > 2 si celé ¢isla. Potom existuje celé ¢islo N > 0, ktoré je
(p, q)-ramseyovske.

Najmensie (p, ¢)-ramseyovské ¢islo nazyvame Ramseyove ¢islo R(p, q).

Tvrdenie 1. Cislo N je (p, q)-ramseyouvské prdave vtedy, ked pre kazdy graf G radu N plati,
Ze G obsahuje K, alebo G obsahuje K,. (Ekvivalentne: Pri lubovolnom ofarbeni hrdn grafu
Kn modrou a ¢ervenou farbou ndjdeme modré K, alebo éervené K.)

Tvrdenie 2. R(p,2) =p

R(3,3)=6

R(p,q) = R(q,p)

Veta 4 (Erdés, Szekeres). Nech p,q > 3 si celé ¢isla. R(p,q) < R(p—1,q9)+ R(p,q—1).
Déosledok 1. Nech p,q > 2 si celé. R(p,q) < (”:ZIQ).

Tvrdenie 3. Nech R(p,q—1) a R(p — 1,q) st parne ¢isla. Potom R(p,q) < R(p—1,q) +

Tvrdenie 4 (Erdss). R(k, k) > 22
Dé6sledok 2. Nech m = min{p, q}. Potom R(p,q) > 2% .

9.3 Grafové Ramseyove ¢éisla

Definicia 1. Nech G, Go su grafy, |G|, |G1| > 2. Celé ¢islo N > 0 nazveme (G1, Ga)-
ramseyovské, ak pri lubovolnom rozklade mnoziny vSetkych dvojprvkovych podmnozin N-
mnoziny na dve casti X1, Xo plati G; C X alebo Gy C Xos.

Najmensie (G, G2)-ramseyovské ¢islo oznacujeme R(G1,Ga).

Ekvivalentné formulacie: cez ofarbenia (modry Gy alebo erveny Ga); kazdy graf radu N
obsahuje ako svoj podgraf G alebo Gs.

Veta 5 (Chvatal). Nech T, je strom radu m > 2, nech m > 2 je celé ¢islo. Potom
R(Tm,K,)=(m—1)(n—1)+ 1.

Tvrdenie 5. Nech G je graf radu p, s chromatickgm éislom x(G) ¢&islom nezavislosti Q).
Potom x(G).a(G) > p. (Pozri vetu 6 z otdzky 7.)

Tvrdenie 6. Nech T, je lubovolng strom rddu m > 1, G je lubovolng graf s 6(G) > m —1
(0(G) je minimdlny stuperi G). Potom G obsahuje T, ako svoj podgraf.

Definicia 2. Graf G nazveme kriticky n-chromaticky (n > 2), ak x(G) =na x(G—v) =n—1
pre kazdé v € G.

Tvrdenie 7. Ak G je kriticky n-chromaticky graf, tak 6(G) > n — 1.
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Tvrdenie 8. Ak x(G) = n > 2, potom G obsahuje kriticky n-chromaticky podgraf. (Stact
zobral podgraf nagmensieho rddu s chromatickgm c&islom n.)

Dokaz vety 5. Nech G je lubovolny pevne zvoleny graf radu (m —1)(n — 1) + 1. Ukdzeme, ze
obsahuje T}, alebo Kn._
Nech G neobsahuje K,,. Potom a(G) <n — 1.

X(G)Q(G) > (m — 1)(n — 1) +1
X(@) > (m131((nG)1)+1 N (mﬂy)ﬁzl)ﬂ -
k:=x(G) =m

Potom G obsahuje kriticky k-chromaticky podgraf FF = §(F) > k—1 > m — 1. Preto
d(G) > m — 1 a G obsahuje T, ako svoj podgraf.

Este treba ukazaf, Ze existuje graf na (m — 1)(n — 1) vrcholoch, ktory neobsahuje T, ani
K,. Je to graf, ktory ma n — 1 komponent stavislosti tvaru K,,_1. O

Tato vetu vie skoro kazdy.

Skoro kazdy znamena kazdy az na mnozinu miery 0.

Do mnoziny miery 0 sa zmesti kazdé spocitatelnd mnozina.
Salat

10 Kombinatorika

(Enumeraéné ulohy.) Vytvdrajice funkcie a ich pouZitie. Stirlingove éisla, rekurentné vztahy.
(Princip zapojenia a vypojenia a jeho zovseobecnenia. Spernerova veta. Chromaticky poly-
nom grafu. Cyklovy index grupy, Polyova veta. Cayleyho veta. Hallova veta, Kdnigova veta.
Algoritmus na ndjdenie systému rozlicnych reprezentantov.)

10.1 Vytvarajuce funkcie a ich pouZitie

> anpn(x) nazveme vytvdrajicou funkciou pre postupnost a,, ak stp,(z) = n, p,(z) € R|z].
Pouziva sa: p,(v) = 2", pn(x) = 77 (~tzv. exponencidlna vytvérajica funkcia)

(14 2)" =Y (})a* je vytvérajica funkcia pre kombinacie

(1+ 2+ 2% +...)" - k-kombin4cie s opakovanim z n-mnoziny

Q+z)" =" akz—l; - k-variacie bez opakovania z n-mnoziny

1+ne+n22?+... = 1=m - k-varidcie s opakovanim z n-mnoziny

Vytvarajuce funkcie sa pouzivaju pri rieseni rekurentnych rovnic.

Rekurentné rovnice uréené konvoliciou

s v n
Cauchyho stéin radov: D a,x™. > bpa™ = cpa”, ¢ =D i ibpn—i
n
Tato metédu sme pouzili na rieSenie rekurencie uy,+1 = Y Ugtn—k, up = 1, ktord udava
k=0

. ., , , R 1 /2
pocet binarnych stromov na n vrcholoch. Vysledkom st Catalanove ¢isla: u,, = P ( :)
10.2 Stirlingove ¢isla

Nech ¢(n, k) oznacuje pocet permutacii = € S,,, ktoré maju prave k cyklov (poéitaji sa aj
cykly dizky 1). Dalej definujeme ¢(0,0) = 1 a c¢(n, k) = 0 ak n < 0 alebo k < 0, (n, k) # (0,0).
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Stirlingove cisla prvého druhu st definované ako
s(n,k) = (=1)"Fe(n, k)

Pre n > 0 plati:
c(nyk)=(n—1)c(n—1,k)+c(n—1,k—1)

c(n,k)z* = (@) =z +1)...(x+n—1)

M=

£
Il

0

Zs(n,k)zk =@, =z(xz—-1)...(x—n+1)
k=0
Stirlingove ¢isla 2.druhu S(n, k) = pocet rozkladov n-prvkovej mnoziny na k casti.

Tvrdenie 1. S(n,k)=kS(n-1,k)+S(n-1,k-1)

=Y S @k (n20)
k=0

Bellove ¢isla B(n) =pocet vetkych rozkladov (ekvivalencii) n-prvkovej mnoziny

B(n) =3 S(n, k)

k=0

Bn+1)= 3 ()B(K)

V [LW] st uvedené aj vytvéarajice funkcie pre Stirlingove ¢isla oboch druhov.
10.3 Rekurentné vztahy

Linearna homogénna rekurentna rovnica s konstantnymi koeficientami:

ap = C1p-1+ ...+ Cpln_p, (10.1)
ci,.-.,Cp st konstanty, p < n. Dalej st dané ao, . .., ap—1 — pociato¢né podmienky.
Rovnica 2 — c1a?~! — ... — ¢, = 0 je charakteristickd rovnica pre (10.1), jej korene
aq,...,qp st charakteristicke korene.
Ak méme dve riesenia rovnice (10.1), tak ich linedrna kombinacia je tiez rieSenie.
Ku korefiu v ndsobnosti k prisltichajt rieSenia o™, na™, ..., n*~ta™.

10.4 Princip zapojenia a vypojenia

Tvrdenie 2. Nech S je N-mnozZina a E1,...,E,. podmnoZiny S. Pre kaZdi podmnoZinu
M mnoziny {1,...,r} definujeme N(M) ako pocet prvkov S v [\;cps Ei a pre 0 < j <'r
definujeme N; := Z\M|:j N(M). Potom pocet prvkov S, ktoré nie si v Ziadnej z podmnoZzin
Ei j€N7N1+N27N3++(71)TNT

TODO ?Zovseobecnenia
10.5 Spernerova veta
Tvrdenie 3. Mazimdlna velkost antiretazca v P(N), kde N = {1,2,...n} je (Ln72j)'

TODO Chromaticky polyném
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10.6 Pdlyova tedria

Definicia 1. Nech A je mnozina a G je grupa permutéacii na A.
Stab(a) = {r € G;7(a) = a}

Inv(n) ={a € A;7(a) = a}

Pre a,b € A definujeme a ~ b < (37 € G)n(a) = b.

O(a) = {b € A;a ~ b} je orbita grupy G.

Lema 1. Ak a ~ b, tak |Stab(a)| = |Stab(b)|. Pre kazdé a € A plati |G| = |Stab(a)||0(a)|.

Veta 1 (Burnsidova lema). Nech G je grupa permutdcii na A, N(G) je pocet orbit grupy

G. Potom
|G| Z|Im)
TeG

(pocet orbit je priemerny pocet pevngch bodov pre permutdcie z G ).
D je mnozina, G je grupa permutéacii na D.
C(D,R)={f: D— R}

() = g f(n(@)) = g()
7 je permutacia na C(D, R)
f~rge Bre@r(f)=y

~* je ekvivalencia na C(D, R)

G* = {r*;7* € G}

(G*,0) je grupa, |G*| = |G|, plati teda

Z|Im)
|G| TeG

(f € Inv(n*) & f je konstantna na kazdom cykle )

Kazdému 7 € G priradime polyném :c?l ...xl kde b; je pocet cyklov dlzky i v rozklade

w. Cyklovy index grupy G je
|G| TeG

Cyklové éislo cye(m) permutécie 7 je pocet cyklov v rozklade 7 na disjunktné cykly. (b +
)

Veta 2 (Specialny pripad Pélyovej vety). Nech G je grupa permutdcii na D, nech R je
mnozina, |R| = m, C(D,R) ={f;f: D — R}. Potom

= 1 2

TeG

Iny tvar: ak oznac¢ime ci(G) pocet permutdcii z G, ktoré maju v rozklade prave k cyklov,

tak
1 (oo}
G")= — ch(G mF
Gl
Vyjadrenie pomocou cyklového indexu:

N(G*)=Z(m,m,...,m)
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Veta 3 (Ohrani¢ena Burnsidova lema). Nech G je grupa permutdcii na A, Y je zjed-
notenie nejakych orbit grupy G. Nech G|Y oznacuje permutdcie ziZené na'Y . Potom

N@GY) == > [Inv(x]Y)]
|G| TeG
777
Ak navySe definujeme vahovu funkciu w: R — Ng a definujeme w(f) = >_,cp w(f(d)),
tak vSetky prvky Iubovolnej orbity majt rovnaki vahu. Ak oznaéime C} pocet orbit véhy k
a C(z) =Y 1o, Crat ac(z) =32, cka®, kde ¢ je pocet prvkov v R s vahou k, tak

Veta 4 (Pélya). C(z) = Z(G,c(z")) (do cyklového indexu grupy G dosadime za kaZdi
premennd c(z")).

10.7 Cayleyho veta

Veta 5 (Cayley). Pocet neizomorfnych oznacengjch stromov rddu n > 2 je rovng n™ 2.

10.8 Systém rozliénych reprezentantov

Definicia 2. Nech Ay, ..., A, je systém podmnoZin mnoziny X. Potom 1, ..., z, nazyvame
systém rozlicnych reprezentantov (transverzdla), aj x; € A; pre i = 1,...,n a x; # x; pre
1<i<j<n.

Veta 6 (Hall). Systém rozlicngch reprezentantov pre As, ..., A, ezxistuje prdve vtedy, ked
|[A;, U...UA, | >k

pre lubovolné 1 < i1 <... < i <n.

Veta 7 (ZovSeobecnenie Hallovej vety). Nech Ay, ..., A, je systém podmnoZin mnoZiny
X anechl <r <n. Vsystém Ay, Aa, ..., A, existuje r-mnoZinovy podsystém s transverzdlou
prave vtedy, ked pre kaZdé k = 1,2,...,n a pre kaZdy vyber iy,i2, ..., taky, Ze 1 < i3 <

ig.. .1 < n plati
|Ai, UAi, U U A, | >k —(n—7).

Veta 8 (Ko6nig). Nech A je matica obsahujica len 0 a 1. Minimdlny pocet riadkov A, ktoré
obsahuju vsetky jednotky je rovny maximdlnemu poctu jednotiek v A takych, Ze Ziadne dve
nelezia na jednom riadku.

Veta 9 (K6nig). Pocet hrdn mazimového pdrovania pdrneho grafu G je rovny minimdlnemu
poctu vrcholov vrcholového pokrytia G.

Algoritmus na najdenie systému rozli¢nych reprezentantov = ?
Pouzit4 literatara: [LW], [KN].

Je to prirovnanie, ktoré kriva na vSetky Styri nohy, pokial ich ma.
Korbas

11 Logika 0. radu

Virokovy pocet, vyrokové formy, dokdzatelnost, interpretdcie, tautoldgie, veta o iuplnosti.
Boolovské algebry, filtre a ich suvis s vyrokovym poctom.
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11.1 Vyrokovy pocet

Definicia 1. Vyrokové formy — VF(P) je najmensia mnozina koneénjch postupnosti zna-
kov jazyka vyrokového poétu (t.j. premenné (prvky P), logické spojky a pomocné znaky
(zatvorky)) taka, ze

(i) P C VF(P)
(ii) Ak A, B € VF(P), tak —A, (A& B), (A= B), (A < B) patria do VF(P).

Interpretdcia je Tubovolné zobrazenie I: VF(P) — {0,1} také, Zze pre lubovolné A, B €
VF(P) plati I(=A) =-I(A), (A& B) =I(A) & I(B), ....

Definicia 2. Nech A € VF(P). Hovorime, Ze
(i) A je tautologia, ak I(A) = 1 pre lubovolnd interpretaciu I: VF(P) — {0,1}.

(ii) A je splnitelna, ak I(A) = 1 pre aspoii jednu interpretciu I: VF(P) — {0,1}.

(iii) A je nesplnitelnd, ak I(A) = 0 pre kazdu interpretaciu I: VF(P) — {0,1}.

(iv) A je vyvrdtitelnd, ak I(A) = 0 pre aspon jednu interpretaciu I: VF(P) — {0,1}.

Definicia 3. Tedria vo vyrokovom pocte je Tubovolnd mnozina T C VF(P). Jej prvky sa
nazyvaju ariomy tedrie T'.

Logické axiémy a definiciu dokazu v tedrii T tu nebudeme vypisovat, je rovnaké ako v
dalSej otazke, s tym rozdielom, Ze tu nemdme axiémy kvantifikdtorov a generalizaciu.

Definicia 4. Hovorime, ze B € V F(P) je dokdzatelnd v teérii T', ak existuje dokaz Ay, ..., A,
v T taky, ze A, = B. Znac¢ime T + B.

Hovorime, 7e B € VF(P) je splnend v teérii T (T |= B), ak pre kazd interpretaciu tedrie
T plati I(B) = 1.

Veta 1 (korektnost). Ak T+ B, tak T = B.

Veta 2 (Gplnost). Ak T | B, tak T + B.

Veta 3 (slaba verzia vety o uplnosti). Ak A je tautoldgia, tak F A.
Veta 4 (o dedukcii). TU{A} - B prdve vtedy, ked T+ (A = B).

Definicia 5. Tedria T sa nazyva spornd (protireciva, nekonzistentnd), ak existuje nejakd
A € VF(P) takd, ze T + A aj T + —A. V opanom pripade sa T nazyva bezospornd
(neprotire¢iva, konzistentna).

Tvrdenie 1. T je spornd prdve vtedy, ked T = A pre kaZdu vyrokovi formu A.

A, akI(A)=1

Pre A € VF(P) definujeme Al = {ﬂA, ak I(A) = 0

Tvrdenie 2 (Lema o interpretacii). Nech A € VF(P) a p1,...,pn st vsetky vgrokové
premenné v A. Potom {p!,... pl}+ Al

Definicia 6. Interpretacia tedérie T' = taka interpretécia, v ktorej ma kazd4 axidéma tedrie
T pravdivostni hodnotu 1.
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Veta 5 (Gplnost). Ak T je bezospornd, tak T md aspon jednu interpretdciu.

Definicia 7. Tedria T sa nazyva uplnd, ak je bezosporna a pre lubovolnt vyrokovid formu
plati T'+ A alebo T + —A.

Uplna tedria mé prave jednu interpretaciu.
Tvrdenie 3. Ku kaZdej bezospornej tedrii T existuje vplnd T O T.

Veta 6 (o kompaktnosti). Ak T+ A, tak existuje koneénd Ty C T takd, Ze To - A.
T je spornd prdve vtedy, ked existuje konecnd To C T, ktord je spornd.
T je bezospornd prdve vtedy, ked kaZdd konecnd Ty C T je bezospornd.
T md interpretdciu prdve vtedy, ked kazdd konecnd Ty C T md interpretdciu.

11.2 Boolovské algebry
Definicia 8. Boolovskd algebra je mnozina B s 2 bindrnymi operdciami A (priesek), V

(spojenie), jednou unérnou operédciou’ (doplnok) a dvoma vyznaénymi prvkami 0, 1 taka, ze
pre vSetky x,y, z € B plati:

TANT =2 rNVNr=x idempotentnost

TANy=yAz rVy=yVz komutativnost

cA(YyAz)=(xAy) Az zV(yVz)=(xVy Vz asociativnost

zA(xVy)=x (xAy)Vy=y zdkony absorbcie
0Nz =0 OVe==x
1Nz=1 l1ve=1

xVyAz)=(@Vy)A(xVvz) zA(yVz)=(xAy)V(zAz) distributivne zdkony
xAx' =0 vz =1 =z
0=1 =0
(xAny) =2'Vy (xVvy) =2' Ny

Definicia 9. Ak B je boolovska algebra, tak S C B je podalgebra B, ked 0,1 € S a S je
uzavretd na A, V, ’.

Ak A, B st boolovské algebry, tak h: A — B je homomorfizmus boolovskych algebier, ak
zachovava operacie, doplnok, 0 a 1. Izomorfizmus je bijektivny homomorfizmus boolovskych
algebier.

Definicia 10. J C B sa nazyva idedl, ak J # 0 a

zeJy<r=yeJ
r,yeJ=xVyed

F C B sa nazyva filter (dudlny idedl), ak F # () a

reFy>x=yeckF,
r,ye F=xNyekF.

J je idedl < {z',z € J} je filter.
F je filter & {2,z € F'} je ideal.

Kongruencie na boolovskych algebrach a faktorové boolovské algebry sa definuja rovna-
kym sposobom ako pre Iubovolné algebry. Je tu korespondencia medzi filtrami a kongruen-
ciami, definuje sa aj B/F, kde F je filter na B. Kongruencia prislichajuica filtru F' je 2 =p y
pvkz oy el (zoy=(x -y Ay —2)
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Veta 7 (Boolean Prime Ideal Theorem). Nech B je lubovolnd boolovskd algebra, potom
pre kazdé 0 # x € B existuje ultrafilter F' v B taky, Ze x € F.

Doékaz predchadzajtcej vety sa robi pomocou principu maximality.

Veta 8. Nech B je lubovolnd boolovskd algebra. Oznacme I mnoZinu vetkych ultrafiltrov v
B. Zobrazenie ¢: B — P(I), kde
ple)={ielzci}

je prosty homomorfizmus boolovskych algebier. (Teda kazdd boolovskd algebra je izomorfnd s
podalgebrou potenénej algebry P(I) pre vhodné I.)

Tvrdenie 4. F' C B je filter prdve vtedy, ked 1 € F a
(Vz,y € B)(Akxz € F,o -y € F taky € F),
kde x —y=21a'Vy.

Definicia 11. a € B je atom, ak 0 < a & —(3z € B)(0 < z < a) (teda 0 < a).
B je atomickd, ak pre kazdé x € B existuje a také, ze a < x a a je atéom. B je bezatomickd,
ak neobsahuje ziaden atém.

Veta 9. Ak B je atomicka boolovskd algebra a I je mnoZina atdmov v B, tak h(x) = {i €
I :i < z} je prosty homomorfizmus boolovskych algebier h: B — P(I). (KaZdd atomickd
boolovskd algebra je izomorfnd s podalgebrou nejakej P(I).)

Ultrafilter je maximéalny vlastny filter.
Veta 10. Nech F je filter v B. Nasledujice podmienky su ekvivalentné:
(i) F je ultrafilter.
(1)) 0¢ F a (Vx,y e B)(xVye F=x € F aleboy € F).
(i1) Pre kaZdé x € B F obsahuje prdve jeden z prvkov x a x'.

(iv) B/F = {0,1}.
Stuvis filtrov s vyrokovym podétom

Ak na VF(P) definujeme relaciu ekvivalencie A = B pvk - (A < B) a prirodzenym
sposobom definujeme operacie, dostaneme boolovsku algebru B(P).

Pre T C VF(P) definujeme A=y B pvk T+ (A< B).
VF(P)/ =r=: B(T)
Dokéazatelné formuly v T tvoria filter (obsahuje 1 a je uzavrety na modus ponens), oznacujeme
ho F(T).

Tvrdenie 5. T je spornd prave vtedy, ked F(T') je nevlastny.

T je bezospornd prdve vtedy, ked F(T) je vlastny.

T je dplnd prdve vtedy, ked F(T) je ultrafilter.

T je spornd prdve vtedy, ked B(T) = B(P)/F(T) je jednoprvkovd.
T je dplnd prdve vtedy, ked B(T) = B(P)/F(T) je dvojprvkovd.

Stcet = scéitanec + scitanec, konjunkcia = konjuganec A konjuganec.
Zlatos
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12 Jazyky

Jazyky a $truktiry prvého rddu, (prenexny tvar formul). [Termy, formuly a tedrie prvého
rddu.] Spliianie formiil, modely teorii. Dokdzatelnost a veta o dedukcii. Bezosporné, iplné a
henkinovské teorie. Gadelova veta o uplnosti. Veta o kompaktnosti a jej dosledky. Priklady
teorii.

12.1 Jazyky a tedrie prvého radu

Definicia 1. Jazyk prvého rddu je trojica L = (F,R,7), FUR=0,7: FUR— N, 7(r) > 0
pre r € R. Prvky F sa funkciondlne (operacné) symboly, prvky R su relaéné (predikdtové)
symboly. T sa nazyva drnost. Prvky F'U R nazyvame Specifické symboly.

Logické symboly sa
a) logické spojky: &, V, =, &, —

b) premenné: x,y, z, 1, T2, Yo, 2, - - -
¢) kvantifikdtory 3, V
d) pomocné symboly (,).

Struktira jazyka L (model jazyka L) je usporiadana dvojica A = (A,I), kde A # 0, I
je zobrazenie s definiénym oborom F' U R také, Ze pre f € F,, I(f): A - Aaprer € R,
I(r) C A™. I(f), I(r) je interpretdicia symbolu f resp. r. A sa nazyva zdkladnd mnoZina
(nosic).

Termy jazyka L Term(L)= najmensia mnozina slov zostavena zo znakov L taka, zZe
(1) ak = je premennd, tak x € Term(L)

(2) ak f € Fy, t1,...,t, € Term(L), tak f(t1,...,t,) € Term(L).

Interpretdcia termov: Ak A = (A,I) je struktira na L, definujeme I(t) = t* = t pre
v8etky t € Term(L). Nech t(z1,...,2,) je term. Potom I(¢): A™ — A je zobrazenie také, ze
pre lubovolné as,...,a, € A plati:

1) ak t = x;, tak I(t)(a1,...,an) = a;
2)akt= f(t1,...,tn), [ € Fy, tj(z1,...,2,) s termy, tak
1(0)(a1, .y an) = IO IE) @1, s T (a1, - ).

Formuly jazyka L: Form(L) = najmensia mnozina taka, ze
1) obsahuje tzv. atomické formuly t1 = to (t1,t2 € Term(L)), 7(t1,...,tn) (r € Ry, t; €
Term(L))

2) Ak 1,2 € Form(L), tak aj —p1, (p1&ep2), (p1V @2), (91 = ¢2), (p1 < @2) € Form(L)
3) Ak ¢ je formula a z premenna, tak (Vx)e, (3z)p st formuly.

Mohutnost jazyka L = ||L|| = |Form(L)| = max(|F|, |R|, No).

Ak ¢(z1,...,2,) je formula jazyka L, A je Struktura jazyka L a aq,...,a, € A, tak
AEplay,. .. an), ¢ize p(ai,...,an,) je splnend v A:

1) Ak ¢ je atomickd formula tvaru ¢ = to (¢; st termy), tak A = ¢(as,...,a,) prave vtedy,

ked ti*(ay,...,a,) = t5'(as,. .., an).
2) Ak ¢ je atomickd formula tvaru r(t1,...,t,), tak A E @(aq,...,a,) prave vtedy, ked
(tMa1,...,an), ..., t2 a1, ..., a,)) € 1A

3) Ak ¢ je tvaru —, tak A = ¢(ai,...,a,) prave vtedy, ked nie je pravda, ze A =
w(ala LR an)‘

Ak ¢ je tvaru 1 &), tak A | (a1, ..., a,) prave vtedy, ked A = ¥1(aq, ..., a,) a zdrovei
A E a(aq, ..., a,). Podobne pre ostatné logické spojky.

4) Ak ¢ je tvaru (3x)(x, 21, ..., 2y), tak A E (a1, ..., a,) prave vtedy, ked existuje a € A
také, ze A = (a,a1,...,an).

Ak ¢ je tvaru (Vo) (z, x1,...,2,), tak A = p(as,...,a,) prave vtedy, ked pre kazdé a € A
také, ze A = (a,aq,...,an).
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Definicia 2. Tedria prvého ridu v jazyku L je lubovolnd podmnoZina T' C Form(L). Prvky
mnoziny T st Specifické axiomy.
Struktira A jazyka L je modelom tedrie T (sphia teériu T), ak A |= ¢ pre kazdé ¢ € T,
oznacujeme A =T
Mod(T) = trieda vSetkych modelov tedrie T'.
Mod(L) = trieda vSetkych modelov jazyka L.
Formula ¢ je splnend v T (je nevyhnutnym dosledkom axiém teérie T'), ak A = ¢ pre
kazdé A € Mod(T), t.j. pre vSetky A plati A =T = A = ¢.
Logické axiémy
Aziomy vyrokového poctu
o= (¥=10)
(p=(W=x)={¢=17v)=(r=Xx)
(= = —p) = (= = @) = ¥)
Aziomy rovnosti
xT=ux
rT=y=>y==x
(x=y&y=2)=>2r==2
(x1 =& ... &xy = yn&r(ze, ..., 20)) = r(y1,. .., Yn), 7 € Ry

(r1 =n&...&rp=yn) = f(x1,.-y2n) = fly1,- .., yn), f € Fy

Axiomy kvantifikatorov
p(tlr) = (3x)p

(Vz)p = o(t|z)

©(t|z) znamend dosadenie termu ¢ za kazdy volny vyskyt premennej x. Substiticia ¢(¢|x) je
pripustné, ak ziadna premenna termu ¢ nie je viazand v mieste volného vyskytu x.

(Vo) & (3z)-p

—~(J2)p & (Vr)-p
(V) (@ = ) = (p = (V2)9),

ak x nie je volna vo ¢
Odvodzovacie pravidld
@, =1

” (MP)
'
Va)o (Gen)

Prenexny tvar formul

Formula je v prenexnej normalnej forme, ak ziadna premenna vo ¢ nevystupuje sicasne
ako volné aj viazand, ziadna premennd sa nevyskytuje pri viacerych kvantifikdtoroch a vy-
skyty kvantifikdtorov predchadzaju vyskyty vSetkych spojok. Ku kazdej formule ¢ existuje
formula ¢’ v prenexnom normalnom tvare, ktora je s 1iou logicky ekvivalentna (t.j. = ¢ < ¢').
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12.2 Dokazatelhost a veta o dedukcii

Definicia 3. Dokaz v tedrii T je postupnost ¢, ..., @, formil jazyka L takd, ze kazdé o,
je:
1) logické axiéma,
2) pi € T7
3) vyplyva z predoslych na zdklade odvodzovacich pravidiel, teda existuja j, k < i také, ze
YK = @; = @; (modus ponens), alebo existuji j < ¢ a premennd x také, ze ¢; = (Vz)p;
(generalizacia).

Formula ¢ je dokdzatelnd v T, ak existuje jej dokaz v T, t.j. dokaz, ktorého poslednym
¢lenom je ¢. Oznacujeme T+ .

T [ ¢ sa tyka sémantiky, zatial ¢o T F ¢ hovori o dokazatelnosti, teda o syntaxi.
Veta 1 (o korektnosti). Ak T+ ¢, tak T |E .

Veta 2 (o dedukcii). T U{¢} F ¢ prdave vtedy, ked T F (¢ = 1), ak ¢ je uzavretd formula
(t.J. @ nemd volné premenné).

Veta 3 (o dedukcii). Nech ¢ je uzavretd. Potom T & ¢ prave vtedy, ked TU{—¢} je spornd.

Definicia 4. Tedria T sa nazyva spornd, ak existuje formula ¢ taka, ze T+ ¢ a T F —p,
bezospornd (konzistentnd) inak.

Teéria T' sa nazyva uplnd, ak je bezosporna a pre kazdt uzavreta formulu ¢ plati T+ ¢
alebo T'F —¢. (Teda tiplna tedria je takd, ktord je maximalna bezospornd).

Veta 4 (o Gplnosti Gédelova). Ak T = ¢, tak T+ .
Veta 5 (o Gplnosti Gédelova). T je bezospornd prave vtedy, ked md model.

Definicia 5. Nech ¢(z) je formula jazyka L a ¢ je konstanta v L. Hovorime, Ze ¢ dosvedcuje
tvrdenie (3z)p(z) v T, ak T + (3z)p(z) = ¢(c). Mnozina konstant jazyka L sa nazyva
mnozina svedkov teérie T, ak pre Tubovolné tvrdenie (3z)p(z) v nej existuje konstanta, ktora
ho dosvedcuje. Tedria sa nazyva henkinovskd, ak ma nejaki mnozinu svedkov.

Veta 6. Nech T je bezospornd teoria v jazyku L. Potom existuje obohatenie Ly jazyka L o
novée konstanty a uplnd henkinovskd teoria Ty v jazyku Ly takd, Ze T C Ty.

Veta 7. KazZdd uplnd henkinovskd teoria md model.
Veta 8. Kazdd bezospornd tedria v jazyku L md model mohutnosti nanajvys ||L||.

Désledok 1. KaZdd bezospornd tedria v spolitatelnom jazyku md spocitatelny model.
Skolemov paradox

Tedria mnozin je tedria v spocitatelnom jazyku. (F = {0}, R = {€}) M4 teda spocitatelny
model M. V modeli M vieme zostrojit NM, RM. Obe tieto mnoziny st spocitatelné, preto

existuje medzi nimi bijekcia. Ale nebude to bijekcia v modeli M. (Mohutnost mnoziny je
relativny pojem.)
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Veta o kompaktnosti

Veta 9 (o kompaktnosti). T+ ¢ prdve vtedy, ked existuje koneénd Ty C T takd, Ze Ty F .
T = ¢ prdve vtedy, ked existuje koneénd Ty C T takd, Ze Ty = .
T je bezospornd prdve vtedy, ked kaZdd konecnd podtedria je bezospornd.
T md model prdve vtedy, ked kaZdd konecnd podtedria md model.

Tvrdenie 1. Peanova aritmetika mad nestandardné modely.
12.3 Priklady teorii
Realne uzavreté polia

Usporiadané polia: F = {+,.,0,1}, R = {<}
Axiémy pola, linedrne usporiadand mnozina a navyse

rly=zc+2<y+=z
r<y&0<z=zz2<y.z

Reélne uzavreté polia (RCF - real closed field) - navyse plati veta o supréme:
Pre kazda formulu ¢(z) je axiéma:

(By) (Vo) (p(z) = = <y) = (32)((Va)(p(2) = = < 2)&(Vy)((V2)(p(2) = 2 <y) = z <y))

t.j. ak je mnoZina uréend formulou ¢(z) zhora ohranicend, tak mé suprémum.

RCEF je bezosporn4, lebo jej modelom je R. KedZe je to bezospornd tedria v spocitatelnom
jazyku, m4 spocitatelny model.

V matematickej analjze sa ukazuje, Ze ak nieco splia axiémy RCF (pri¢om veta o supréme
plati pre Tubovolnii podmnozinu), tak je to izomorfné s R. P(R) = 220 5 oo 5 . My vsak
mame vetu o supréme len pre mnoziny tvaru {z, ¢(x)}, ktorych je Ry, teda to nie je spor.

Reélne algebraické ¢isla s redlne uzavreté pole.

RCF je uplna tedria.

Peanova aritmetika

Jazyk: +,.,0,1
Axiémy:
0+1=1
z+l=y+l=z=y
r+0==zx
(z+y)+1l=x+(y+1)
z.0=0

z(y+1l)=zy+x

Schéma indukcie: Pre Tubovolna formulu ¢(z, . ..) nasledujica formula je axiéma:

(¢(0)) & (Vo) (p(z) = p(x + 1)) = (Ve)p(z)
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Tedéria grup

V jazyku TG(-):

(Vz)(3y) (V2)((wy)z = z = 2(zy) = (yz)z = 2(yx))
V jazyku TG(-, e)

V jazyku TG(-,e, 1)

(zy)z = x(yz)

x lz=e

|
8

Ak chdpeme grupu ako Struktiaru v jazyku T'G(-) alebo T'G(:,e), tak jej podstruktira
nemusi byt grupa. (Napriklad (N, +) C (Z, +).) To znamen4, Ze tedriu grap v tychto jazykoch
nemozno axiomatizovat pomocou univerzalnych axiém.

Neexistuje tedria koneénych grip (v zmysle teérie 1. rddu). (Dosledok vety o kompakt-
nosti.)

Teéria poli

rty=y+ua Ty = ya
r+y+z)=@+y += (zy)z = x(y2)
(+,.,0,1) x+0=0 lax==x
Vady(x +y = 0) Vedy(x #0=zy =1)

z(y+2)=zy+az
Axiémy st univerzalno-existen¢né.
Neexistuje tedria T' (1.raddu) v jazyku poli taka, ze Mod(7') by boli vSetky polia konecnej
charakteristiky. (Dosledok vety o kompaktnosti.)
Mame retazcovy komplex, ktory vyzerd neskodny, a skodny vcelku nie je, ale je uzitocny.
Korbas

13 Podstruktiry a homomorfizmy
Podstruktiry, homomorfizmy a retazce Struktir. Elementdrna ekvivalencia, elementdrne pod-
Struktiry a elementdrne retazce. Tarského kritérium. Diagramy. Aziomatické a koneéne axi-
omatizovatelné triedy. Univerzdlne, eristencné, univerdlno-existenéné a pozitivne formuly.
Zachovdvanie teorii pri algebraickijch konstrukcidch.

13.1 Podstruktiry a homomorfizmy

Definicia 1. Strukttra B = (B,...) jazyka L sa nazyva podstruktirou $truktiry A (zna¢ime
B C A), ak B C A a pre lubovolné n, f € F,,, r € R, a prvky aq,...,a, € B plati:

fB(al,...,an) = fA(al,...,an)
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(ay,...,a,) € r prave vtedy, ked(ay, ..., a,) € r8

Platnost univerzalnych forml sa prendsa na podstruktiry. Existenc¢né vlastnosti sa na-
opak prenasaju na nadstruktary. Takisto sa samozrejme prenasaju univerzalne a existencné
tedrie.

Definicia 2. Nech A, B st struktury, h: A — B. Hovorime, Ze h je homomorfizmus, ak pre
lubovolné as,...,a, € A, f € F,, r € R, plati

th(a’la" '7an) = fB(hala' "7han)

(a1,...,an) € rt = (hay, ..., hay) € B
Hovorime, ze B je homomorfny obraz A, ak existuje surjektivny homomorfizmus h: A — B.

Definicia 3. A, B su $truktury jazyka L, h: A — B. Hovorime, ze h je vnorenie A do B
(h: A B), ak je injektivne a pre Iubovolné as,...,a, € A, f € F,,, r € R, plati:

th(a’la" '7an) = fB(hala' "7han)

(a1,...,an) € 4 prave vtedy, ked (hay, ..., hay,) € rP

Izomorfizmus je surjektivne vnorenie. Je to ekvivalentné s tym, ze je to bijekcia a aj
inverzné zobrazenie je homomorfizmus.

Pozitivne formuly (t.j. tie, ktoré st vytvorené len pomocou V, A, 3 a V) sa prendsaji na
homomorfné obrazy. Existen¢no-pozitivne formuly (tie nesma obsahovat vSeobecny kvantifi-
kator) sa prenesu z A na B, ak existuje homomorfizmus h: A — B.

Tvrdenie 1. A C B prdve vtedy, ked ids: A — B.
h: A — B je vnorenie prdve vtedy, ked h je izomorfizmus A na h(A).

Definicia 4. Nech A, B € Mod(L) a h: A — B. Hovorime, ze h je elementdrne vnorenie A
do B, ak pre Tubovolnu formulu ¢(z1,...,z,) a prvky ai,...,a, € A plati (A E ¢(a@)) =

(B |= ¢(ha)).

Elementarne vnorenie je vnorenie (zachovavaju sa atomické aj negatomické formuly).
Ekvivalentna definicia elementarneho vnorenia je (A = ¢(@)) < (B = ¢(hd)).

Definicia 5. Ak A C B, hovorime, Ze A je elementdrna podstruktira B (ozna¢ujeme A < B),
ked pre Tubovolnt formulu ¢(%) ai,...,a, € A plati (A E ¢(@)) = (B | ¢(@)).

Elementdrna ekvivalencia: A = B (A, B € Mod(L)) prave vtedy, ked pre lubovolnt uzav-
reta formulu ¢ plati A = ¢ < B = o.

Tvrdenie 2. Ak A < B, tak A = B.
Ak h: A= B, tak A= B.

Priklad 1. Q £ R £ C (ako polia). D4 sa ukézat, Ze pre pole algebraickych ¢isel (A, +,.,0,1)
plati A < C, ANR < R.

Tvrdenie 3. Ak A<BaB<C, tak A=<C.
Tvrdenie 4. Ak A < B a B je konecné, tak A = B.
Tvrdenie 5. Ak A<C,B<C aACB, tak A< B.
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Definicia 6. Th(A) = {p; » je uzavretd a A |= ¢} je tedria struktiry A.

Th(AA) je elementdrny diagram Struktary A.

DT (A) = {y; ¢ je uzavretd atomicka formula L4 taka, ze A |= ¢} je pozitivny atomicky
diagram Struktary A.

Diagram (atomicky diagram) $truktiry A je D(A) = {¢;¢ je uzavretd atomické alebo
negatomickd formula jazyka L4 takd, ze A = ¢}.

Th(A) je plnd tedria. Struktira A je jednozna¢ne dand pomocou Dt (A). Z Godelovej
vety vyplyva, Ze kazda uplnd tedria mé tvar Th(A).

Tvrdenie 6. Nech h: A — B. Potom h je elementdrne vnorenie A do B prdve vtedy, ked
(B, h(a))aca = Th(Aa).

Tvrdenie 7. Nech A, B € Mod(L). Potom A mozno elementdrne vnorit do B prdave vtedy,
ked existuje rozsirenie (B,bg)aca Struktiry B do Struktiry jazyka La takd, Ze (B,b,) E
Th(AA).

Tvrdenie 8. Nech A,B € Mod(L), h: A — B prdve vtedy, ked (B, h(a))sca = DT (A).
Tvrdenie 9. Nech A,B € Mod(L). Potom A C B prdve vtedy, ked A C B a Ba |= D(A).

Tvrdenie 10. Nech A, B € Mod(L), h: A — B. Potom h: A — B je vnorenie prdve vtedy,
ked (B, h(a))aca = D(A).

Nech A,B € Mod(L). Potom A mozno vnorit do B prdve vtedy, ked existuje rozsirenie
(B,ba)aca Struktiry B do jazyka L4 také, Ze (B,b,) = D(A).

Veta 1 (Tarského kritérium pre elementirne podstruktiary). Nech A C B. Potom
A < B prdve vtedy, ked pre lubovolni formulu o(x) jazyka La plati: Ak B = (3x)p(z), tak
existuje a € A také, Ze B = ¢(a).

Veta 2 (Lowenheim-Skolem-Tarskil). Nech A je nekoneénd, A € Mod(L), § je kardi-
ndlne ¢islo také, ze ||L|| < B, |A| < 8. Potom existuje elementdrne rozsirenie B struktiry A

(B~ A) také, ze |B| > § (1B| = §).

Veta 3 (Lowenheim-Skolem-Tarski|). Nech A € Mod(L). Potom pre kaZdé kardindlne
cislo B také, Ze ||L|| < 0 < |A| existuje B < A také, Ze |B| = 3. Dokonca pre lubovolni
X C A taki, ze | X| < [ existuje B < A takd, Ze |B| =5, X C B.

Désledok 1. KaZdd nekonecnd Struktira spocitatelného jazyka md spocitatelni elementdrnu
podstruktiru.

Lema 1 (o vzadjomnej bezospornosti). Teoria T U S je spornd prdve vtedy, ked existuji
©1(Z), ..., on(Z) € S také, zZe T+ (3Z)(—p1(Z) V ...V ~pn(Z)).

' je mnozina axiém pre tedriu T', ak Mod(T") = Mod(T).

Lema 2 (axiomatizaéna lema). Nech T je bezospornd tedria v jazyku L a A je mnoZina
uzavretych formil jazyka L uzavretd na konecné disjunkcie. Potom nasledovné podmienky su
ekvivalentné.

(i) T md mnoZinu azxiom I' C A.
(ii) Pre lubovolné A, B € Mod(L) plati: A=T, BETh(A)NA = BET.

Veta 4. Nech T je bezospornd tedria. Potom T sa prendsa na podstruktiry prdve vtedy, ked
T md mnozinu univerzdlnych azxiom.

50



Veta 5. Nech T je bezospornd tedria. Potom trieda Mod(T') je uzavretd vzhladom na nad-
Struktiry, prdve vtedy, ked T md mnoZinu existencngch aziom.

Definicia 7. Univerzalno-ezxistencnd formula: V@3yp(Z, ¥, Z), kde ¢ je bez kvantifikdtorov.
Ezistenéno-univerzdlna formula: 3ZVYe(Z, ¥, Z), kde ¢ je bez kvantifikdtorov.

Y= uzavreté formuly logicky ekvivalentné s univerzalnymi

¥9= uzavreté formuly logicky ekvivalentné s existenénymi

1= uzavreté formuly logicky ekvivalentné s univerzalno-existenénymi
9= uzavreté formuly logicky ekvivalentné s existenéno-univerzalnymi

Definicia 8. Retazec struktir jazyka L nad linedrne usporiadanou mnozinou (I, <) je systém
Struktiar v jazyku L (A;, ¢ € I) taky, ze pre i < j je A; C A;.
Zjednotenie retazca (A;,i € I) je Struktara A = |J A = (U 4is--.),

i€l i€l
fA(ala"'aan):fAi(ala"'aan)
(a1,...,an) € 4 prave vtedy, ked (a1,...,apn) € A

Elementdrny retazec je taky, ktory splita aj A; < A;.

Ak A; tvoria refazec, tak kazdé A; je podstrukttrou J;c;A;. Ak ide o elementarny
retazec, tak je to elementarna podstruktura.

Tvrdenie 11. Nech ¢ je uzavretd univerzdlno-existencénd formula a (A;);cr je retazec Struk-
tir jazyka L. Ak A; = ¢ pre kazdé i € I, tak |J A; E ¢ (t.j. univerzdino-existencné formuly
il

sa zachovdvaji pri zjednotent retazca,).

Veta 6. KaZdé pole ' md algebraicky uzdver (algebraicky uzavreté nadpole), algebraicky
uzavret€ algebraické rozsirenie F'.

Veta 7. Nech T je bezospornd teoria v jazyku L. Potom nasledovné podmienky su ekviva-
lentné.

(i) T md mnoZinu univerzdlno-existenéngch axiom.
(i) Mod(T) je uzavretd na zjednotenie lubovolnych retazcov.
(iii) Mod(T) je uzavretd na zjednotenie retazcov nad (N, <).

Veta 8. Nech T je bezospornd teoria v jazyku L, potom trieda Mod(T) je uzavretd na ho-
momorfné obrazy prdve vtedy, ked T md mnoZinu pozitivnych azidm.

Flasa, z ktorej sa ni¢ nevyleje. Ibaze sa tam ani ni¢ nedé naliat.
Korbas - o Kleinovej flasi

14 Modely

Filtrovany sucin, ultrasucin a ultramocnina. Losova veta. Veta o kompaktnosti v jazyku
ultraproduktov. Charakterizdcia elementdrnej ekvivalencie a (koneéne) ariomatizovatelngch
tried. (Charakterizdcia elementdarnych tried. Peanova aritmetika, formalizdcia dokdzatelnosti.
Gadelove vety o netplnosti, Gédelova-Rosserova veta. Tarského veta o nedefinovatelnosti re-
ldcie splriania.)
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14.1 Priamy a filtrovany sucin
Definicia 1. [] A; - priamy sicin systému (A;,i € I) = ([[As,...), [Lic; Ai = {a: T —
icl
UA; Vi a(i) € Ay, flT A (aq, .. 00)GE) = fA (i), ..., an(d), (a1,...,0,)GE) € A
prave vtedy, ked (ay(7),...,an(i )) € rhi,
Ak A; = A pre vietky i € I, tak [] A; sa nazyva priama mocnina a oznacuje sa A’.
Diagondlne vnorenie d: A — Al a — d(a), d(a): I — A, d(a)(i) = a.

14.2 Ultraprodukt a Losova veta

Definicia 2. Zovseobecnend pravdivostnd hodnota

[plar, .. an)l = {i € LA = p(ar(i), ..., an(i)}

Tvrdenie 1. [p&y(a)] = [p(a)] N [¢(d)]

[p V()] = [p(@)] U [p(d)]

[—p(@)] = [p(@)]€ =1\ [p(a)]

[(Bx)p(z,d)] = 1L‘[J [0(8, @)] = [p(dy, d)] pre nejaké ag € [] Ai — princip mazima
(Vo)p(z,d)] = [ [p(B,a)] = [p(do, Q)] pre nejaké ag € [[ A; — princip minima

BelT Ai

Definicia 3. Ak D je filter na I, tak definujeme oo =p (3 prave vtedy, ked [a = ] € D.
Filtrovany sucin [[ Ai/D = (] A:/D,...),

i€l
f(alD""7a/r?):f(a17"'7an)D7
(ole, . ,a,?) € r prave vtedy, ked [r(aq,...,a,)] € D.

Al /D sa nazgyva filtrovand (redukovand) mocnina.
V pripade, ze D je ultrafilter na I, nazyvame filtrovany sacéin ultraprodukt a filtrovana
mocnina je ultramocnina.

Veta 1 (Losova). Nech B je ultrasiucin A'/D, a nech I je indexovd mnoZina. Potom pre
lubovolnd formulu o(x1,...,2,) @ aq,...,an € [ A4; plati

BEoaP, ... a?) vtedy a len vtedy, ked [p(a, ..., a,)] € D.

Tvrdenie 2. Ak D je ultrafilter, tak d: A —> AL/D.
Veta o kompaktnosti v jazyku ultraproduktov

Definicia 4. C C P(I) je centrovany systém, ak prienik jeho IubovoIného kone¢ného pod-
systému je neprazdny. (Zrejme kazdy filter je centrovany systém.)
Veta 2 (o kompaktnosti). Nech X je mnoZina uzavretych formil jazyka L uzavretd vzhla-

dom na koneéné konjunkcie a pre kaZdé o € 3 nech A, je Struktira jazyka L takd, Ze A, = 0.

Potom existuje ultrafilter D nad ¥ taky, Ze [| As/D E X.
ceXD

Veta 3 (Keisler-Shelah). Ak A = B, tak existuje mnoZina I a ultrafilter D na I taky, Ze
Al/D=B!/D.

Veta 4. Nech A,B € Mod(L). Potom A = B prave vtedy, ked existuje mnoZina I a ultrafilter
D na I tak, e h: B—> A'/D.
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14.3 Triedy Struktuar

Definicia 5. Nech K C Mod(L). Tedria triedy K je Th(K) = {¢; ¢ je uzavretd a K | ¢} =
( Th(A).

AeK
K = ModThK
T = ThMod(T) = {¢p je uzavreta; T I~ ©}. (deduktivny uzéver)

Tvrdenie 3. T; C Ty = Mod(71) 2 Mod(7%)
Mod(Th(Mod(T))) = Mod(T)

Definicia 6. K C Mod(L) sa nazyva aziomatickd trieda, ak existuje tedria T v jazyku L
takd, ze K = Mod(T).

Veta 5. Nech K C Mod(L) je lubovolnd trieda Struktir. Potom st ekvivalentné:

(i) K je aziomatickd trieda.

(ii) K je uzavretd vzhladom na izomorfizmy, elementdrne podstruktiry a ultraprodukty.
(ii) K je uzavretd na elementdrne ekvivalencie a ultraprodukty.

Definicia 7. K C Mod(L) je varieta, ak existuje mnozina atomickych formual 7' takd, ze
K = Mod(T).

Veta 6. K je varieta prdave vtedy, ked K je uzavretd na podstruktiry, homomorfné obrazy a
priame SUCINY.

Definicia 8. Badzické Hornove formuly st formuly tvaru @1 V...V ¢,, kde @; st atomické
alebo negatomické, ale najviac jedna z nich je atomicka.
Hornove formuly st vyrobené z bazickych Hornovych formal pomocou &, 3, V.

Bézické Hornove formuly mozu byt:

1. ziadna atomicka: =1 V...V =), = (1 & ... &) (¢¥; st atomické)

2. ziadne negatomické: ¢ — atomicka

3. nejaka atomicka a nejaké negatomické: —ip1 V...V =), Vo = (01& ... &,) = ¢
Ak I je vlastny filter, hovorime o vlastnom filtrovanom stcine.

Veta 7. T sa prendsa na vlastné filtrované suciny prdve vtedy, ked T md mnoZinu Hornovijch
aziom.

Veta 8. Ak T je univerzdlna tedria, tak
(i) T sa prend$a na priame siciny prdve vtedy, ked
. /v v 7’ . /v 7 I’
(i1) sa prend$a na koneéné priame suciny prdve vtedy, ked
(i4i) md univerzalne Hornove axidmy.

Definicia 9. Trieda K C Mod(L) (resp. tedria T') sa nazyva konecne aziomatizovatelnd, ak
existuje kone¢na mnozina formtl S takd, ze K = Mod(S) (resp. Mod(T") = Mod(5)).

Veta 9. Trieda K C Mod(L) je konecne aziomatizovatelnd prdve vtedy, ked K aj Mod(L)\K
st axiomaticke triedy.

Predpoklad, ze tato tedria je sporna, vedie k sporu.
Zlatos
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15 Teoria mnozin

Zdkladné pojmy tedrie mnoZin (Boolovskd algebra mnoZin, reldcie a zobrazenia, ekvivalen-
cia a rozklad, usporiadanie). Konstrukcie usporiadanych mnozin, Hasseovej diagramy, zvizy,
dplnost. Naivnd tedria mnozin a jej paradoxy, axiomatizdcia tedrie mnoZin, systém ZF. (Axi-
dma vgberu a vseobecny kartezidnsky sicin.) MnoZinovd ekvivalencia a subvalencia. Mohut-
nost mnoziny, aritmetika kardindlnych cisel. Cantorova-Bernsteinova veta. Diagonalizdcia,
Cantorova veta, mohutnosti Ry a ¢, mohutnosti niektorych dolezitych mmnozin.

Pri priprave tejto otazky boli okrem poznamok pouzité [BS], [H], [SS] a [Z].

15.1 Zakladné pojmy tedrie mnozin
Tu st len také samé Tahké veci, ktoré je mozno az $koda pisat.

XUY={z:zeXVzeY}

XNY={z:zeXNzeY}

X\Y={z:zeXAz¢Y}
XxY={(r,y):zeXANxeY}

Usporiadana dvojica (a,b) = {{a}, {a,b}}
Relacie

Definicia 1. Reldciou medzi prvkami mnozin A, B nazjvame aktkolvek podmnozinu kar-
tezianskeho sucinu A x B. Ak A = B, tak hovorime o relacii na mnozine A.

Definicia 2. Ak RC X xY, S CY x Z st relacie, tak kompoziciou (zloZenim) relacii R a
S nazyvame relaciu So R C X x Z takd, ze (x,z) € So R < Jy; (z,y) € RA (y,2) € S.

(SoR)y'=R1'os™!
R[A]={beY;(Ja € A)(a,b) € R}
R7'A] = {a € X;(3b€ B)(a,b) € R}
R[AU B] = R[A]U R[B]
R[AN B] C R[A]N R[B]

[AUB] = f[A]U f(B]
[ANB] C f[A]N f[B]
Ak f je bijekcia:
fHAUB] = fHAJU B
FHANB] = fYAn fY[B]

Definicia 3. Nech D je relacia na mnozine A.

— =
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D je reflexivna (Vo € A)(z,x) € D

D je symetrickd (x,y) € D= (y,x) €D
D je asymetrickd (z,y) € D= (y,z) ¢ D
D je tranzitivna (z,y) e DA (y,z) € D= (z,y) € D

D je trichotomickd z#y= ((r,y) € DV (y,x) € D)
D je antisymetrickd  ((z,y) € DA (y,x) € D)=z =y

Asymetrickd relacia sa tiez zvykne volat silne antisymetrickd, antisymetrickd sa tiez vola
slabo antisymetricka.

Ekvivalencia

Definicia 4. Relacia D na mnozine A sa nazyva reldcia ekvivalencie na A, ak je reflexivna,
symetricka a tranzitivna.

Veta 1. Nech D je reldcia ekvivalencie na mnozine A # (). Pre x € A oznaéme A(x) = {y €
A: (y,z) € D}. Potom systém mnozin {A(x) : x € A} tvort rozklad mnoZiny A. (Nazjva sa
rozklad indukovany ekvivalenciou D. A(x) sa nazgva trieda ekvivalencie prvku x.)

Nech A je neprdazdna mnoZina a S je jej rozklad. Definujme na mnoZine A reliciu D ako
D={(z,y) e AxA:(IM € S)(x € M ANy e M)}. Potom D je reldcia ekvivalencie na A a
S je nou indukovany rozklad.

Usporiadanie

Definicia 5. Relicia < na mnozine X sa nazyva diastocné usporiadanie, ak je reflexivna,

antisymetrickd a tranzitivna. (Alternativna definicia: relacia <, ktora je antireflexivna, silne

antisymetrickd a tranzitivna.) Dvojicu (X, <) potom volame ¢iastoéne usporiadand mnozina.
Nech (X, <) je ¢iasto¢ne usporiadand mnozina. Ak plati

(Vz,y € X)(z <yVy <),
tak (X, <) sa nazyva linedrne (totdlne) usporiadand mnoZina.

Definicia 6. Nech (X, <) je ¢iasto¢ne usporiadand mnozina. Hovorime, ze prvok z je pokryty
prvkom y, ak (z < y) A (F2)z < 2z < y. Znacéime z —< y.

Hasseovej diagram: = je spojené s y stipajiacou hranou, ak r —< y.

Definicia 7. a je najvicési prvok ¢lastocéne usporiadanej mnoziny A, ak (Vz € A)z < a.

a je najmensi prvok &iasto¢ne usporiadanej mnoziny A, ak (Vo € A)z > a.

a je mazimdlny prvok A, ak (Az € A)a < x, minimdlny, ak (Pz € A)z < a.

a je horné (dolné) ohranidenie podmnoziny B C A, ak (Vb € B)a > b (a < D).

Infimum je najvacsi prvok mnoziny dolnych ohraniceni a suprémum je najmensi prvok
mnoziny hornych ohraniceni.

Ciasto¢ne usporiadana mnozina sa nazyva tplnd, ak kazda jej ohrani¢end podmnoZina
ma suprémum a infimum.

Definicia 8. Nech (4, <), (B, <) st ¢iasto¢ne usporiadané mnoziny. Zobrazenie f: A — B je
izotonne, ak x <y = f(z) < f(y). [ je antitonne, ak x < y = f(x) > f(y). [ je monotonne,
ak je izoténne alebo antiténne.

Izomorfizmus Ciasto¢ne usporiadanych mnozin je zobrazenie f: A — B, ktoré je bijektivne
aplati x <y < f(z) < f(y). (Ekvivalentne: bijekcia takd, ze f aj f~! st izoténne.)
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15.2 Naivna tedria mnozin a jej paradoxy

Cantorova definicia mnoziny bola intuitivna. ,,Mnozina je sthrn objektov rozliiteInych
nasou intuiciou.”

Cantorov (vymedzovaci) princip: ak ¢(z) je nejakd dost presne definovand vlastnost, tak
{z; p(x)} je mnoZina.

Russelov paradox: {z;z ¢ z}

Berryho paradox: B = {z € N : 2 mozno jednozna¢ne popisat slovnym spojenim najviac
20 slov slovenského jazyka} (Ked m definujeme ako najmensie prirodzené ¢islo, ktoré nemozno
jednoznacne ..., dostali by sme m € B aj m ¢ B.)

15.3 Zermelov-Fraenkelov axiomaticky systém tedrie mnozZin

Axiéma extenzionality (VA,B)(A=B & Vz(r € A<z € B))
Axiéma dvojice Ve, y)(3Z2)Ve)(z € Z o (z =2V z=1y))
Axiéma zjednotenia (VS)(EX)(Vz)(x € X & (Ts € S)(z € 9))
Axiéma potencie (VX)(3P)(VC)(C e P& C C X)
Schéma axiém vymedzenia: Nech o(x) je vyrokové formula

jednej volnej premennej
VA)BX)(Vz)(z € X & (z € AN p(x)))

Schéma axiém obrazu (substittcie): Nech F' je zobrazenie
(VA)(3B)(Vy)(y € B & (3x)(z € ANF(z) =y))
Inak: Nech ¢(u,v) je formula neobsahujiica volné premenné w, z

(V) (Vo) (Vw) (¢ (u, v) AN (u,w)) = v =w) =
(Va)(F2)(Vo)(v € z < (Fu)(u € a A(u,v)))

Axiéma regularity (fundovanosti) VA A#D= Tz e AznA=0)
Axiéma existencie: (Fz)(x = x)
Axiéma nekone¢nej mnoziny: FAD e ANVz)(zr e A=z U{z} € A)

Nasleduje vysvetlenie, aky je vyznam jednotlivych axiém (pozri [Z] alebo [H].) Axiéma
extenzionality udava, Ze dve mnoZiny sa rovnaju prave vtedy, ked maja rovnaké prvky. (Prvky
sa na mnozine podielaji len svojou pritomnostou.) Axiéma dvojice, zjednotenia a potencie
nam umoziuje vytvéarat z danych mnozin nové mnoziny. (Axiéma dvojice sa tiez pouzije pri
definicii usporiadanej dvojice.) Axiéma nekone¢na postuluje existenciu nekone¢nej mnoziny.
Schéma axiém vymedzenia uprestiuje Cantorov vymedzovaci princip. Schéma axiém obrazu
rozSiruje schému axiém vydelenia. Axiéma regularity zakazuje nekonecné klesajice refazce
... € gy € 11 € T a zarucuje, ze celé univerzum mnozin mozno ziskat pomocou iteracii

operacii poten¢nej mnoziny, t.j. Vo =0, Voy1 =P (Vo) a Vi = |J V, pre limitny ordinél A.
a<A

15.4 Axiéma vyberu

Princip vyberu: Pre kazdy rozklad r mnoziny X existuje vyberovd mnoZina, to znamena
mnozina v C X, pre ktort plati (Vu € r)(3x)(v Nu = {z}).

Definicia 9. Funkcia f definovana na mnozine X, pre ktora plati (y € XAy # 0) = f(y) € v,
sa nazyva selektor na mnozine X.

Axiéma vyberu (AC): Na kazdej mnozine existuje selektor.

Definicia 10. Nech J je mnozina. Kartezidnsky sdcin systému mnozin {F; : j € J} definu-
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jeme ako

15 =15 7= UF A€ NFG) € B

jedJ
Tvrdenie 1. Nasledujice tvrdenia su ekvivalentné:
(i) azioma vgberu,
(i) princip vijberu,
(iii) pre kaZdi mnoZinovi reldciu s existuje funkcia f takd, Ze f C s a Dom(f) = Dom(s).
(iv) Karteziansky sicin neprazdneho sucinu neprazdnych mnoZin je neprdazdny.

ZFC = ZF + AC
15.5 MnozZinova ekvivalencia, kardinalne éisla

Definicia 11. Hovorime, Ze mnoziny A, B st ekvivalentné (A =~ B), ak existuje bijekcia
f:A— B.

Hovorime, ze A je subvalentnd B, A < B, ak existuje injekcia f: A — B.

A je ostro subvalentnd B, A< B,ak A< B a A#% B.

Veta 2 (Cantor-Bernstein). Ak A < B a B <X A, tak A~ B.

Bez AC nemusi platit, Ze kazdé dve mnoZiny st porovnatelné v reldcii <.

Kardindlne ¢islo mozno chépat ako najmensie ordinélne ¢islo s danou kardinalitou. Can-
torova definicia bola taka, Ze to boli vlastne typy (triedy) mohutnosti mnozin.

Existuje funkcia N, ktora zobrazuje triedu vsetkych ordinalnych ¢isel na triedu vsetkych
nekoneénych kardinalnych ¢isel. Je hodnoty oznacujeme R(a) =: R,. Funkcia X je monoténna
a spojitad (t.j. zachovéva usporiadanie a supréma).

Kardinalna aritmetika

Definicia 12. Ak s, A st kardinélne ¢isla, tak definujeme kardinédlny sucet, stéin a kardi-
nalnu mocninu:

et A = ({0} x ) U ({1} x )]
A= |\ X x|
7= {f: x5}

N, + Ng = Na.Nﬁ = max{Na, Nﬁ}

APt = aB.a
B = (aﬁ)v
() = 767

Veta 3 (Cantorova). 2% > s
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Diagonalizaéna metdda, ktorou sa dokazuje Cantorova veta, mé velmi Siroké uplatnenie.

2%e = NRe

Hypotéza kontinua: 280 = X,

ZovSeobecnend hypotéza kontinua (GCH): Pre kazdé nekoneéné kardindlne ¢islo X, plati
2%a =N, (t.j. medzi X, a 2% uZ nie st ziadne iné kardindlne ¢isla).

Godel dokéazal, ze zovSeobecnend hypotéza kontinua je bezosporné vzhladom k axiémam
ZF. Cohen (a nezavisle od neho Vopénka) ukazal, Ze hypotéza kontinua je nezavisla na axié-
mach tedrie mnozin (t.j. nevyplyva z nich).

Ro = N[, ¢ = [P(N)].

Mnozina A je spoéitatelnd, ak A < N. Ekvivalentnd podmienka: A = @) alebo existuje
surjekcia g: N — A.

Spoéitatelné mnoziny: Mnozina vSetkych prirodzenych éisel, koneéné postupnosti priro-
dzenych ¢isel, algebraické ¢isla. Spocitatelné zjednotenie spocitatelnych mnozin je spodita-
telnd mnozina. (Na dokaz treba axiému vyberu.)

Nespoditatelné: R, postupnosti prirodzenych é&isel, transcendentné ¢isla, Cantorovo dis-
kontinuum.

Princip matematickej indukcie je ekvivalentny s tym, ze mnozina prirodzenych ¢isel N je
dobre usporiadana.

.....

Zlatos
16 Ordinalne é&isla

Izomorfizmus c¢iastocne usporiadanych mnozin, ordindlny typ. Dobre usporiadané mnozZiny,
ordindlne ¢isla a ich aritmetika. Ordindly wy a w.

Dobré usporiadanie

Definicia 1. Usporiadana trieda sa nazyva dobre usporiadand, ak kazda jej neprazdna pod-
mnozina ma najmensi prvok.

Dobre usporiadana trieda je linedrne usporiadana.
Veta 1. KaZda podtrieda dobre usporiadanej triedy je dobre usporiadand.

Veta 2. Nech (A, <) je dobre usporiadand mnoZina a nech f je izotdnne zobrazenie mnoZiny
A do A. Potom pre Ziadne a € A neplati f(a) < a.

Definicia 2. Mnozina I C A je dsek usporiadanej mnoziny (A, <), ak existuje také a € A,
ze I = {x € A;x < a}; oznacujeme I = A,.

Veta 3 (Zakladna veta o ordindlnych é&islach). Nech (A, <4), (B,<p) st dobre uspo-
riadan€ mnoziny. Potom alebo A a B su izomorfné mnoZiny, alebo jedna z nich je izomorfnd
useku druhej.
Ordinalne ¢isla

Ordinélne ¢isla st typy dobre usporiadanych mnozin, to znamena, Zze vSetkym navzajom

izomorfnym dobre usporiadanym mnozinam zodpoveda to isté ordinalne ¢islo.
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Ordinélne éisla mozno zaviest viacerymi ekvivalentnymi spésobmi.

Usporiadand mnozina A sa nazyva ordinalne ¢islo, ak a = A, pre kazdé a € A. (Salat,
Smital; Hart) Mnozina A je ordinalne ¢islo, ak je tranzitivna (t.j. x € X = 2 C X) a € je
dobré ostré usporiadanie na X. (Balcar, Stépanek)

Veta 4. Ku kaZdej dobre usporiadanej mnozine A existuje ordindl Ord(A) s tymito vlast-
nostami:

(i) A= Ord(A)

(i) Ak (A, <), (A*,<*) si dobre usporiadané mnoZiny, tak A = A* plati prdve vtedy, ked
Ord(A) = Ord(A*).

Ord(A) sa nazyva ordindlne ¢islo mnoziny A.
Veta 5. Kazda dobre usporiadand mnoZina je izomorfnd prdve s jednym ordindlnym cislom.

Definicia 3. Ordinalne ¢islo a je mensie ako ordindlne ¢islo 3, ak « je podobné nejakému
tuseku mnoziny §. Namiesto a = 3, potom piSeme a < 3.

Veta 6. Pre lubovolné dve ordindlne ¢isla o, 3 st nasledujice vyroky ekvivalentné:
(i) a<p
(1) a C B
(iii) o € B
Aritmetika ordinalnych cisel
Lema 1. Nech (A,<a), (B,<p) st disjunkiné dobre usporiadané mnoZiny. Potom mnoZina
C = AU B je dobre usporiadand reldciou <c= (<a4)U (<) UA x B.

Definicia 4. Nech (4, <), (B,<p) st disjunktné dobre usporiadané mnoziny. Nech C =
A U B je mnozina usporiadand relaciou z predchadzajicej definicie. Potom ordinalne ¢islo
~v = Ord(C) sa nazyva sucet ordinalnych ¢isel & = Ord(A) a f = Ord(B). Piseme v = a+ 5.

Veta 7. Ak «, 3 su ordindlne cisla, B # 0, tak o < a + 5.

wH+l#zw=14w

Definicia 5. Nech (A,<4) a (B,<p) st usporiadané mnoziny. Potom usporiadanie <¢
kartezidnskeho stic¢inu C = A x B dané vzfahom

[21,11] <c [22,92] & (Y1 < y2) V (y1 = y2 N z1 <4 22)
sa nazyva lexikografické usporiadanie mnoziny A x B.

Lema 2. Ak (A,<4) a (B,<p) st dobre usporiadané mnoziny, tak lexikografické usporia-
danie sucinu A X B je tieZ dobré usporiadanie.

Definicia 6. Nech A, B st dobre usporiadané mnoziny. Nech C' je karteziansky suéin A x B
s lexikografickym usporiadanim. Potom v = Ord(C) sa nazyva sicin ordindlnych disel o =
Ord(A) a = Ord(B). Piseme v = . alebo len v = af.

w2=wtw#2w=w
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Ordinaly w a Q)

Ordinalne ¢islo mnoziny N s obvyklym usporiadanim sa oznacuje w. Je to najmensie
nekonecné ordindlne ¢islo.

Mnozina ordinadlnych ¢isel vSetkych dobrych usporiadani mnoziny N, ¢ize mnozina vset-
kych spocitatelnych ordinalnych &isel, je tiez ordinédlne éislo, ktoré sa zvykne oznacovat )
alebo w;. Je to najmensie nespoditatelné ordinédlne éislo.

Literattira k ordinalnym é&islam: [BS], [H], [SS].

...Co je nesporne SpOr.
Cinéura

17 Axiéma vyberu

Transfinitnd indukcia. Princip dobrého usporiadania, axioma vyberu, Zornova lema a ich
dalsie ekvivalenty a dosledky.

Téato cast je podla [Z2]. Tu sa dolnym rezom (pociatoénym tsekom) rozumie to, ¢o bol v
predchadzajticej Gasti tisek, ale mdze to byt navyse aj celd mnozina. Dalej sa pouziva znadenie
X ={reX:z<a}

17.1 Transfinitna indukcia a rekurzia

Veta 1 (o transfinitnej indukcii). Nech (X, <) je dobre usporiadand mnoZina. Nech
A C X je mnozina takd, Ze

(Vae X)(XW CA=acA).
Potom A= X.

Veta 2 (o transfinitnej rekurzii). Nech (X, <) je dobre usporiadand mnoZina, Z je lubo-
volnd mnoZina a g je funkcia takd, Ze

domg = U 7X@,
acX

Potom existuje jedind funkcia f: X — Z takd, Ze pre kazdé a € X plati
fla) =g(f 1 X®).

Triedu vSetkych ordindlnych ¢isel budeme znacit Q . Tranzitivna trieda je také trieda X,
7e z € y& y € X = z € X. Transfinitna indukcia a rekurzia sa najcastejSie pouzivaja pre
ordinalne ¢isla, ¢ize v nasledovnej formulacii.

Veta 3 (o transfinitnej indukcii). Nech X C € je tranzitivna trieda, A C X je trieda
takd, Ze

MaeX)(aCA=acA)
Potom A = X.

Veta 4 (o transfinitnej rekurzii). Nech X C € je tranzitivna trieda, Z je lubovolnd trieda
a G je triedovd funkcia takd, Ze
domG = | ] z°.
aceX
Potom ezistuje jedindg funkcia F: X — Z takd, Ze pre kazdé a € X plati

F(a) = G(F [ o).
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Doékaz transfinitnou indukciou aj konstrukcia transfinitnou rekurziou sa obvykle deli na
dva kroky: pre limitné a pre nelimitné ordinaly.

17.2 Ekvivalentné formy axiémy vyberu

Definicia 1. Podmnozina A ¢iastoéne usporiadanej mnoziny (X, <) sa nazyva refazec, ak
Y )

je linedrne usporiadana. Hovorime, Ze podmnozina A ¢iasto¢ne usporiadanej mnoziny (X, <)

je usmernend, ak pre Tubovolné =,y € A existuje z € A také, ze x < zay < z.

Veta 5. Azioma vijberu je ekvivalentnd s kaZdym z nasledujicich tvrdeni:

(i) Nech E je ekvivalencia na mnoZine X. Potom existuje mnoZina Y C X takd, Ze (Vx €
X)3ly € Y)(xEy).

(i) Na kazdej mnoZine X (ktorej prvkami si mnoZiny) existuje selektor, t.j. zobrazenie
h: X — |JX také, ze (Vz € X)(z # 0 = h(z) € x).

(iii) Pre kaZdi reldciu R existuje funkcia f takd, e dom f = domR a f C R.

(iv) Ku kaZdej surjekcii f: X — Y existuje pravé inverzné zobrazenie, t.j. zobrazenie g: Y —
X také, Ze fog=1idy.

(v) Kartezidnsky sicin systému neprazdnych mnoZin je neprdzdny.

Axiéma vyberu sa pouziva napriklad aj v dokaze ekvivalencie Heineho a Cauchyho defini-
cie spojitosti a tiez v dokaze tvrdenia, Ze zjednotenie spocitateIného systému spocitatelnych
mnozin je spoéitatelnd mnozina. (V oboch pripadoch staéi tzv. slabd axiéma vyberu, ktora
postuluje existenciu selektora pre spocditatelné systémy mnozin nanajvys mohutnosti konti-
nua.)

Princip dobrého usporiadania (WO). KaZdi mnoZinu mozno dobre usporiadat.

Veta 6. Princip dobrého usporiadania je ekvivalentny s kazZdym z nasledujicich tvrdeni:
(i) Pre kazdi mnoZinu X plati | X| € Q.
(ii) Pre kaZdi nekoneéni mnoZinu X existuje o € Q také, Ze | X| = N,.
(iii) Pre lubovolné mnoZiny X, Y plati X XY alebo Y < X.
(iv) Pre lubovolné kardindlne éisla o, B plati o < 3 alebo § = a.

Principy maximality st najcastejSie oznacované nazvom Zornova lema. Vsetky nasledu-
juce formuléacie principu maximality st ekvivalentné.

Princip maximality (MPO). Nech (X, <) je ¢iastoéne usporiadand mnoZina, v ktorej
je kazdy retazec zhora ohraniceny. Potom pre kaZdé x € X existuje mazximdlny prvok m € X
taky, Ze x < m.

Princip maximality (MP1). Nech X je lubovolnd mnoZina a S C P(X) je systém jej
podmnoZin taky, Ze pre kazdy usmerneny podsystém D v (S,QC) plati |JD € S. Potom S
obsahuje mazimdlny prvok.

Princip maximality (MPO0’). Nech (X, <) je ¢iastoéne usporiadand mnoZina, v ktorej
kazda usmernend podmnoZina md suprémum. Potom v (X, <) existuje mazimdlny prvok.

Princip maximality (MP1’) Nech X je lubovolnd mnozina a S C P(X) je systém
jej podmnozin taky, Ze kaZdy retazec v (S, C) je zhora ohranideny. Potom pre kazdé A € S
ezristuje maximdlna mnozina M € S takd, Ze A C M.

Pouzitim principu maximality mozno napriklad dokazat, ze pre kazdy centrovany systém
existuje ultrafilter, ktory ho obsahuje.
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Veta 7. Axioma vgberu (AC), princip dobrého usporiadania (WO) a princip maximality si
ekvivalentne.

Daélezité je uvedomit si medze toho, ¢o moézeme vediet o nasom vedeni.
)
Zlatos

18 Univerzalne algebry a zvizy

Univerzdlne algebry, zdkladné algebraické konstrukcie (faktorovd algebra, priamy a polo-
priamy sucin), zviz kongruencii algebry, variety algebier, Birkhoffova veta. Distributivne a
moduldrne zvizy. Boolovské algebry a ich reprezentdcia.

18.1 Univerzalne algebry

Definicia 1. Typom algebier rozumieme mnozinu F', ktorej prvky nazyvame operac¢né sym-
boly. Kazdému prvku f € F patri nezaporné celé ¢éislo o(f), nazgvané jeho drnostou. Ak
o(f) = n, hovorime, Ze f je n-arny operaény symbol. Nuldrne opera¢né symboly sa nazyvaji
konstanty. F,, budeme oznacovat mnozinu vSetkych n-arnych operac¢nych symbolov typu F.

Definicia 2. Nech F je typ algebier. Algebrou typu F nazyvame dvojicu A = (A; F), kde A
je neprazdna mnozina a kazdému operacnému symbolu f € F' je priradena n-arna operacia
f4 na mnozine A, pricom n = o(f).

Homomorfizmy a kongruencie

Definicia 3. Nech A, B st algebry typu F. Zobrazenie ¢: A — B sa nazyva homomorfizmus
(tiez homomorfné zobrazenie), ak pre kazdé f € F (nech o(f) = n) a kazdé a;,...,a, € A
je <,0(f(a1, SERE) an)) = f(ﬁpal, ceey @an)

Homomorfizmy st uzavreté na skladanie, obraz a vzor algebry v homomorfizme st po-

dalgebry danej algebry. Obraz podalgebry generovanej nejakou mnozinou je podalgebra ge-
nerovand obrazom tej mnoziny.

Lema 1. Nech ¢: A — B je bijektivny homomorfizmus algebier. Potom ¢~ ': B — A je tieZ
homomorfizmus.

Definicia 4. Bijektivny homomorfizmus algebier sa nazyva izomorfizmus. Hovorime, Ze al-
gebry A, B st izomorfné (A = B), ak existuje izomorfizmus A — B.

Definicia 5. Ekvivalencia 6 na algebre A, pre ktoru plati
a;0b; (Z = 1, .. .,n) = f(al, .. .,an)Of(bl, .. ,bn)

pre vSetky f € F (t.j. 0 je kompatibilnd s operdciami algebry A), sa nazyva kongruencia.
Mnozinu vSetkych kongruencii na A budeme oznac¢ovat Con A.

Na kazdej algebre existuju dve trividlne kongruencie w (najmensia) a ¢ (plnd).
Jadro homomorfizmu je kongruenciou, naopak kazda kongruencia je jadrom prirodzeného
homomorfizmu:

Definicia 6. Nech 6 je Tubovolnd kongruencia algebry A = (A; F'). Na faktorovej mno-
Zine A/ definujeme operacie pre vietky f € F takto: f([a1]d,...,[an]0) = [f(a1,...,an)]0.
Dostaneme tak algebru .4/6, ktort nazyvame faktorovou algebrou.

p: a — [a]f je homomorfizmus algebry A na algebru A4/6 a Kerp = 6. ¢ nazyvame
prirodzeny homomorfizmus.
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Priame a polopriame suciny

Definicia 7. Nech (A;;4 € I) je systém algebier typu F, A = [[(A;;4 € I). Definujme algebru
[1(A:;i € I) takto: Ak f € F je n-arny operaény symbol, al,... a" € A, je f(a',...,a") taky
prvok kartezidnskeho stéinu A, ze pre kazdé i € I je f(al,...,a™)(i) = f(a'(i),...,a"(4)).
Algebra (A; F') sa nazyva priamy sicin algebier A;. Stéin kone¢ného poctu algebier sa ozna-
éujer XA1 X ... XAn.

Definicia 8. Izomorfizmus ¢: B — [[(Ai;i € I) algebry B na priamy sGéin algebier 4;
nazveme priamym rozkladom algebry B. Hovorime, Ze B sa da rozlozif na priamy sac¢in
algebier A;, ak taky izomorfizmus existuje. A; nazveme faktormi priameho rozkladu.

Definicia 9. Podalgebru A priameho sic¢inu [] (A;;¢ € I) nazyvame polopriamy sucin tych
algebier, ak pre kazdé i € I je projekcia m;|4: A — A; surjektivna. Injektivny homomorfizmus
v: B — [[(As;4 € I), pre ktory ¢[B] tvori polopriamy stéin algebier nazyvame polopriamym
rozkladom algebry B, algebry A; nazyvame jeho faktormi. Ak taky homomorfizmus ¢ existuje,
hovorime tiez, ze B sa da rozlozif na polopriamy sa¢in algebier A; (i € I).

Polopriamy rozklad nazveme vlastngm, ak pre Ziadne i € I nie je (m;|p[B]) o ¢: B —
A; izomorfizmus. Algebra, ktord nema vlastny polopriamy rozklad sa nazyva polopriamo
nerozloZitelnd.

Veta 1. Ak p: B — [[(As;i € I) je polopriamy rozklad algebry B, 0; = Ker(mop) (i € I).
Potom | J(0;:i€I)=w a A; = B;/0; pre kazdé i € I.

Veta 2. Nech A je algebra. Nasledujice podmienky siu ekvivalentné.
(i) A je polopriamo nerozloZitelnd.
(1)) N0 :0 € ConANO #w) #w.

Okruh Z celych é&isel je priamo nerozlozitelny, ale je polopriamo rozloZitelny.
18.2 Zvizy a uplné zvizy

Zavedieme oznaclenie a V b pre sup{a,b} a a A b pre inf{a,b}.

Definicia 10. Usporiadand mnozina P, v ktorej pre kazdé a,b € P existuje a Vb (a A b) sa
nazyva V-polozviz (A-polozviz) alebo horng (dolng) polozviz. P sa nazyva zvdz, ak pre kazdé
a,b € P existuje a Vb aj a Ab. P sa nazyva uplny zviz, ak pre kazdi podmnozinu A C P
existuje sup A4 aj inf A.

Veta 3. Usporiadand mnoZina P je prdve vtedy uplnym zvizom, ked kazdd jej podmnoZina
md infimum. (Ekvivalentne: ked P md najvicsi prvok a kaZdd neprdzdna podmnoZina P md
infimum.)

Veta 4 (Tarski). Ak P je uplny zviz, tak kaZdé izotonne zobrazenie f: P — P md pevny
bod.

Tarskiho vetu mozno pouzit na dokaz Cantor-Bernsteinovej vety. Mame injekcie f: A —
B ag: B— A ahladdme pevny bod funkcie F': P(A) — P(A), F(X)= A\ g(B\ f(X)).
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Lema 2. Nech P je zviz. Operdcie A a V spliiaji identity (idempotentnost, komutativnost,
asociativnost, absorpcia)

TANT =1 (L1)
TANy=yAzx (L2)
(xAyY)ANz=xA(YyAz) (L3)
(xANy)Vx=x (L4)
zVr==z (L)
xVy=yVzx (L2)
(xVy)Vz=aV(yVz2) (L3)
(xVy)hzx=x (L4

Veta 5. FEristuje navzdjom jednojednoznaénd koreSpondencia medzi zvizmi (L; <) a algeb-
rami (L; A\, V) spliajicimi identity (L1) aZ (L4) a (L1°) a (L4). Algebra patriaca zvizu L
md operdcie x Ay = inf{x,y} a xVy = sup{z, y}, usporiadanie zvizu prislichajiceho algebre
(L; A, V) je dané vztahom x <y sz Ay =z(&axVy =vy).

Vo zvize plati:
a<b=>cANa<cAbcVa<cVb
a1 < bj,ag <bg = a; ANas < by ANba,ar Vas < by Vb
a<ca<db<cb<d=aVb<cAd
(and)V(anc)<an(bVec)
aV((bAce)<(aVb)A(aVc)
a<c=aV((brc)<(aVb)Ac
(anb)V(bAc)V(cha)<(aVD)A(DVe)A(eVa)
a; < b; = tlay,...,an) <t(b1,...,b,) pre kazdy termu typu {A, V}
Ak t je term, tak t¢ je term, ktory vznikne z ¢ zdmenou V a A.

Tvrdenie 1 (Princip duality). Ak I = t; = t, je identita platiaca vo zvize, tak aj ¢ =
td = td (tzv. dudlna identita) je identita platiaca vo zvize.

Ak I = I?, tak I sa nazyva samodudina.
18.3 Distributivne a modularne zvizy

Lema 3. Nasledujuce identity su vo zvize ekvivalentné.

xA@yVz)=(xAy)V
zV(ynz)=(zVy)

—

xAz) (L5)
(xV2) (L5)

>

Definicia 11. Zviiz, ktory splia niektorti z identit (L5), (L5’) sa nazyva distributivny.
Zviz sa nazyva moduldrny, ak spliia podmienku

r<z=zV(yAz)=(xVy) Az (18.1)

Oba tieto pojmy st samoduélne. Kazdy distributivny zviz je modulérny.
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Veta 6. Zviz je moduldrny prdve vtedy, ked neobsahuje podzviz izomorfny s Ns.
Zviz je distributivny prdve vtedy, ked neobsahuje podzviz izomorfny s Mz alebo Ns.

Veta 7. Zviz je distributivny prdve vtedy, ked
(AyY)VyAz)V(zAz)=(xVYyY)A(yVz)A(zVa).

Veta 8. Zviz je moduldrny prdve vtedy, ked a N\b=a Nc,aVb=aVec,b<c= b=c.
Zviz je distributivny prdve vtedy, keda Ab=aNc,aVb=aVc= b=c.

Veta 9 (Dedekindov princip transponovania). Ak a, b si prvky moduldrneho zvizu,
potom @ :p—bVp a:q— aAq si navzajom inverzné izomorfizmy [a Ab,a] a [b,a V b].

7
N

Operacie uzaveru

Definicia 12. Operdciou uzdveru v triede A sa nazjyva také zobrazenie ~: P(A4) — P(A),
7e pre kazdé XY C A plati

(i) Xc X~
i) XCY =X CY~
(i) X~ =X~

Trieda X C A sa nazyva uzavretd , ak X~ = X.
Nech A je trieda. Triedu U C P(A), ktord m4 vlastnosti

(i) AeU
(if) Ak X; e Uprekazdéiel, tak(((X;:i€l)eU.

nazyvame uzdverovym systémom v A.
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Veta 10. Euxistuje jednojednoznacnd korespondencia medzi operdtormi uzaveru v triede A a
uzdverovymi systémami v A.

Uzdverovy systém v mnoZine, usporiadany mnozinovou inkluziou, je uplny zviz. V tomto
zvdze su prieseky mnoZinové prieniky, spojenie systému mnozZin je uzdver ich mnoZinoveého
zjednotenia.

Ak A je algebra, tak Con A je uzaverovy systém v mnozine A x A. Je to teda uplny zvéz.
Ak L je zviz, tak zviaz Con L je distributivny.

18.4 Boolovské algebry

Definicia 13. Nech L je zviiz s najmensim prvkom 0 a najviac¢sim prvkom I. Prvok b € L je
komplement prvkua € A, akaAb=0,aVb=1.

vy s

Zviz s najmensim a najvacsim prvkom nazveme komplementdrnym, ak kazdy jeho prvok
ma komplement.

Definicia 14. Komplementarny distributivny zvéz sa nazyva boolovsky zviz. Ak (L; A, V) je
boolovsky zviiz, algebra (L; A, V,”,0,I) sa nazyva boolovskd algebra.

Podalgebry algebier P(M), kde M je nejakd mnozina sa nazyvaji mnozinové boolovské
algebry.

Veta 11. Atomdrna boolovskd algebra je izomorfnd s mnoZinovou boolovskou algebrou. Bo-
olovska algebra je izomorfnd s mnoZinovou algebrou P(M) prdve vtedy, ked je atomdrna a
uplnd.

Boolovski algebru mézeme teda chapat ako algebru s operaciami Vv, A, ’, 0, 1. Podalgebra
boolovskej algebry je podmnozina, ktora je uzavreta na tieto operacie.

18.5 Variety

Definicia 15. Triedu V algebier rovnakého typu nazveme varietou, ak existuje mnozina [
identit taka, ze A je prvkom triedy V prave vtedy, ked spliia kazdt identitu z I.

Veta 12 (Birkhoff). Trieda algebier rovnakého typu je varietou prave vtedy, ked je uzavretd
na homomorfizmy, podalgebry a priame suciny.

Kazdy rozmysla, samozrejme.
Tomanova

T4to bibliografia méa sltzit nie len ako zoznam literatiry pouzitej pri priprave otazok, ale
aj ako zoznam literattry, ktord sa d4 u néas zohnat alebo stiahnuf. (Samozrejme, ¢asom uz
niektoré linky asi nebudu platit, ale najst tie veci na webe uréite nebude problém.)
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Okrem Legéna ostatni napisali otazky na papieriky a ¢lovek si vytiahol jeden.

Salat skusal veci z tedrie &isel. (Cize tiplne kazdy dostal jednu otézku z tedrie ¢isel. Skusal aj
veci, ktoré neboli napisané v sylaboch na Statnice!!l)

1. Divergencia Y 1, 3 %

Ak d | m.n, musi platit, ze d | m alebo d | m.

2. Vztah medzi (a,b) a [a, b].

Moéze mat rieSenie rovnica z™ + y™ = 2"; x,y, z st prvocisla, n > 2.

(Ako dopliiujtce otazky: prvoéisla — pocet, ohranicenia, prvoéiselna veta.)
3. Dokonalé ¢isla 1. druhu.

Ak 2™ — 1 aj 2™ 4+ 1 st prvocisla, ¢o z toho vyplyva pre n.

4. Cantorove rozvoje.

Vlastnosti funkeii o(n) a 7(n) pre n — oo.

5. Pocet prvocisel, dolny odhad (), sucet delitelov 100.

Zlato$ skusal vsetko, ¢o neskusali ostatni.
1. Rovinné grafy, Eulerova formula.
Konecne generované moduly nad OHI.

2. Oreho veta.

Reprezentacia Boolovskych algebier.

3. Linearne a Hammingove kédy.
Godelova veta o tplnosti.

4. Sylowove vety.

Zachovavanie vlastnosti pri teoreticko-modelovych konstrukciach.
5. Ramseyho veta.

Axiéma vyberu a ekvivalentné formulécie.

Cinc¢ura sktisal vieobecnti topoldgiu.

1. Metrizovatelné priestory a ich vlastnosti. Vety o metrizacii topologickych priestorov.

2. Normalne priestory — vlastnosti, zachovavanie na topologické konstrukcie. Urysohnova
lema.

3. Uplne regularne priestory. Veta o reprezentacii.

4. Regularne a uplne regularne priestory. Zachovanie pri topologickych konstrukciach. Savis
s normalnymi priestormi.

5. Suvislé a linearne suvislé priestory a ich savis, vlastnosti, . ..

Legén skusal algebraicka a diferencialnu topoldgiu.

1. Singularne homologické grupy topologickych priestorov. (Doplitujtica otédzka: Ci pomocou
homologickych grip vieme dokdzat, ze R™ a R™ st nehomeomorfné ak m # n.)

2. Vnaranie variet do R™.

3. Fundamentélna grupa.

4. Diferencovatelné variety a diferencovatelné zobrazenia.

5. Homotopia, retrakcie.
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