Verzia: 25. jana 2002
Problém homeomorfnosti topologickych priestorov
Def: D" = {(z1,...,7,) € R%; 2} + .-+ + 22 < 1} je tzv. (uzavretd) jednotkova gula v R".
Def: D" = {(z1,...,2,) € R*;22 + -+ + 22 < 1} je tzv. n-rozmerné jednotkova bunka v R".
D" ~ R"
h:D" = R"
W)= =t holy) = b o
Def: Kazdy topologicky priestor homeomorfny s D" sa nazyva n-rozmerna bunka (n-bunka).
Kazdy topologicky priestor homeomorfny s D™ sa nazyva n-rozmerna gula.
Tvrdenie: D* x D? je (k + p)-rozmerna bunka.
Def: S := {(z1,...,3,) € R"! 27 4+ .- + 22| = 1} je n-rozmerna jednotkova sféra.
Kazdy priestor homeomorfny s S™ sa nazyva n-rozmerna sféra.
D" = {(x1,...,2, € S";2p41 > 0} = hornd hemisféra
D" = {(z1,...,2, € S";Zpt1 < 0} = dolnd hemisféra
S" =D uD™ DY N D" = {(x1,...,2, € S";Tpq1 = 0} = rovnik
Dn N D™ ~ S"1
Tvrdenie: Nech zy € S™ je Tubovolny bod. Potom S™ — {zo} ~ R".
Lema: Nech h : X - Y je homeomorfizmus, X a Y st Tj-priestory (t.j. jednobodové mnozZiny st
uzavreté). Potom pre Tubovolny bod zg € X je hlx_{z01 : X — {20} =Y — {h(z0)} homeomorfizmus.
Poznamka: Podla mia tu vobec netreba predpoklad Ti, ale ak ide o Tj-priestory, tak mozno lemu
obrétit.
Def: Pre Tubovolny topologicky priestor X a zp € X definujeme ¢islo P,,(X) = pocet komponentov
stvislosti priestoru X — {zo}. Py,(X) = sa nazyva index bodu zp v X.
Tvrdenie: Ak existuje homeomorfizmus h : X — Y, tak pre lubovolné zy € X mame P,,(X) =
Ph(xo) (Y) .
Def: Oblast je otvorena stvisld podmnozina priestoru R”.
Veta: (o invariantnosti oblasti) Ak X, Y st 2 podpriestory v R” a existuje homeomorfizmus medzi nimi,
tak z otvorenosti X vyplyva otvorenost Y.
Dasledok: Homeomorfny obraz oblasti je oblast.
Veta: (o invariantnosti dimenzie) R™ ~ R" < m = n.
Désledok: S™ ~ S™ & m = n.
Veta: (O invariantnosti okraja) Nech h : D™ — D" je homeomorfizmus. Potom h(S""1) = "L,

Konstrukcia topologickych priestorov
Veta: Nech X je topologicky priestor s relaciou ekvivalencie ~g a Y je topologicky priestor s relaciou ek-
vivalencie ~g. Nech f: X =Y je spojité zobrazenie také, Ze reSpektuje dané relacie ekvivalencie (teda
z ~rYy = f(x) ~s f(y)), potom predpis [z] — [f(z)] dobre definuje zobrazenie f : X/~g — Y/~g, f
je spojité.
Okrem toho ak f je homeomorfizmus redpektujtici dané relacie a f~! tiez reSpektuje dané relacie ekvi-
valencie, tak f : X/~r =Y/ ~s je homeomorfizmus.
Dohoda: Budeme stéle predpokladat, Zze pri konstrukcidch novych priestorov vsetko, ¢o pouZijeme mé
také vlastnosti, aby aj vysledny priestor bol Hausdorffovsky.

Faktorovy priestor podla podpriestoru
Def: Nech X je topologicky priestor a nech A # (§ je uzavrety topologicky podpriestor X. Potom na X
méme reldciu ekvivalencie ~ uréent podpriestorom A: z ~y < {z,y} C AV z =y.
Faktorovy topologicky priestor X/ ~ potom zna¢ime X/A = faktorovy priestor topologického
priestoru X podla topologického podpriestoru A. ("X podla A”)
Def: Ak X je topologicky priestor, A jeho Iubovolny topologicky podpriestor, tak dvojica (X, A) sa
nazyva (topologicky) par priestorov.
zobrazenie parov f : (X, A) — (Y, B) je spojité zobrazenie f : X — Y také, ze f(A) C B.
Zobrazenie parov f : (X, A) — (Y, B) je homeomorfizmus parov, ak f: X - Y je homeomorfizmus
taky, ze f(A) = B.
Veta: Nech f: (X,A) — (Y,B) je zobrazenie topologickych parov, predpokladajme, %e podpriestory
A, B st uzavreté. Potom predpis [z] — [f(z)] definuje spojité zobrazenie f : X/A — Y/B.
navyse, ak f je homeomorfizmus parov, tak f: X/A — Y/B je homeomorfizmus.
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Def: Zobrazenie topologickych parov sa nazyva relativny homeomorfizmus, ak flx_4: X — A —
Y — B je homeomorfizmus.
Veta: Nech A # ) je uzavrety topologicky podpriestor X, potom p: (X, A) — (X/A, {[A]}) je relativny
homeomorfizmus.
Veta: Nech X je kompaktny priestor a A # () nech je uzavrety podpriestor. Potom X/A je jednobodové
kompaktifikicia priestoru X — A.
D"/Sn 1l S
Def: Valec (cylinder) nad priestorom X je X x I, kde [ =< 0,1 >
Faktorovy priestor X x I'/X x {1} sa nazyva kuZel (kénus) nad X a zna¢ime ho CX.
CcS" 1~ D"
Def: Nech {X;};ecs je systém navzajom disjunktnych topologickych priestorov. Z kazdého X; vyberme
z; € X;. Faktorovy priestor '+J X;/{Z;}jes sa nazyva jednobodové spojenie (wedge) priestorov
j€
X, oznaduje sa \/ X;, pri koneénom pocte X1 V Xo V X3
JjeJ
Zliepanie topologickych priestorov
Def: Nech X, Y st topologické priestory a nech A C X je uzavrety podpriestor. Ak mame déke spojité
zobrazenie f : A — Y , tak mozeme definovat novy topologicky priestor Y U; X (”Y zlepené s X pomo-
cou f pozdlz A”), takto:
na topologickej sume X + Y zoberieme relaciu ekvivalencie ~ uréent tym, Ze a ~ f(a) pre vietky a € A.
PotomY Uy X := (X +Y)/~.

Plochy
Def: Plocha je hausdorffovsky topologicky priestor P so spocitatelnou bézou topolégie taky, ze kazdy
jeho bod mé4 okolie homeomorfné s uzavretym diskom D?.
Ak P je plocha a pre dany bod z € P je h: A —>0D2 homeomorfizmus z okolia A bodu z na D?, tak z
sa nazyva vniitorny bod plochy P, ak h(z) € D?, a z sa vold okrajovy bod (hrani¢ny bod) plochy
P, ak h(z) € St C D?.
Tvrdenie: Tato definicia nezavisi od vyberu okolia A ani homeomorfizmu h.
Def: Mnozina v8etkych okrajovych bodov plochy P sa nazyva okraj plochy P, ozna¢ujeme 0P, P —OP
sa nazyva vnutro plochy.
Plocha, ktord je kompaktnd a takd, ze OP = () sa nazyva uzavretd plocha.
Def: Plocha P sa nazyva orientovatelnd, ak pri obehnuti po ploche P po Iubovolnej uzavretej ceste
prenesieme zvoleny stradnicovy systém do koncového (=zaciatoéného) bodu tak, Ze vysledny stradni-
covy systém sthlasi s pdvodnym, pri prenose ddvame pozor, aby sme stiradnicovy systém ”nezmenili”.
neorientovatelni = ak nie je orientovatelna.

Klasifikacia uzavretych ploch
Def: Nech P, P; st dve uzavreté plochy. Nech z1 € Py, &5 € Ps, hy : D1 — D? | hy : Dy — D? st
homeomorfizmy, pricom z; € Dy, x5 € Ds.
h;l ohy : D1 = D> je homeomorfizmus, zobrazuje okraj na okraj.
Vyrezme ﬁl z P, a ﬁg z P,. Dostaneme P, — ﬁl, P, — ﬁg plochy s okrajom.
8(P1 — l:)l) ~ 8D1
8(P2 — DQ) ~ 8D2
h;lohl :6D1—>P2—ﬁ2
0D je uzavrety podpriestor v Py — lo)l, ¢ize mozeme prilepit plochu P; — D k ploche P> — D pomocou
hy' o hy.
Vysledok zlepenia je tiez plocha a topologicky nezavisi od vyberu homeomorfizmov hy, hs.
Vyslednii plochu znacime Py #Ps, je to tzv. suvisla suma ploch Py a Ps.
Veta: Kazda uzavretd plocha je homeomorfnd s jednou (a iba jednou) z tychto ploch:
P, = S?#T%* .. . #T?, kdem >0
P, = S2#RP24 ... #RP?, kde k > 1
Plocha P,, sa nazyva orientovatelnd plocha rodu m, plocha P, sa nazjva neorientovatelna plocha
rodu k.
Topologické variety s okrajom
Def: Hausdorffovsky topologicky priestor M so spoéitatelnou béazou topoldgie je n-rozmerna topo-
logicka varieta s okrajom, ak kazdy bod ma okolie homeomorfné s uzavretym diskom D™.
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Ak M je n-rozmerna topologickd varieta s okrajom a pre z € M je h : A — D™ homeomorfizmus, tak
bod z je vmitorny bod M, ak h(z) € D" a z je okrajovy bod M, ak z € S"~! C D".

OM je mnozina vSetkych okrajovych bodov variety M, nazyva sa okraj variety M.

Ak M je kompaktnd a OM = (), tak je to tzv. uzavretd varieta.

Tvrdenie: Ak OM je okraj n-rozmernej topologickej variety, tak @M je (n — 1)-rozmernd varieta bez
okraja.

Lema: Nech M je n-rozmernd topologickd varieta, nech M # @. Potom pre lubovolny bod z € OM
existuje okolie W > z také, 7e existuje homeomorfizmus h : D" ! x I — W taky, ze h(0,0) = z a
h(D™"! x {0}) = W N oM.

Priliepanie n-rozmernej bunky k priestoru
Def: Nech X je topologicky priestor (podla dohody hausdorffovsky) a nech f : S"~! — X je spojité
zobrazenie. S"~! je uzavrety podpriestor v D". Prilepme D" k X pomocou f pozdlz S"~!, vznikne
priestor X Uy D™
X Uy D" =X + D"/ ~, kde ~ je generované tym, %e a ~ f(a) pre a € S" 1.
p: X+D"—» X+ D"/ ~=XUs D" je kanonickd projekcia, p(z) = [2].
e := p(D™) ~ D" sa vol4 n-rozmern4 bunka priestoru X Uy e
Tvrdenie: p|p» : (D", 5" ') - (X Uy e”,p(X)) je relativny homeomorfizmus.
Tvrdenie: Pér priestorov (Z,X) a relativny homeormorfizmus F : (D", 8" 1) — (Z,X), kde Z je
hausdorffovsky a X je uzavrety. Potom Z je priestor, vzniknuty z X prilepenim jednej m-rozmernej
bunky pomocou F|gn-1, t.j. Z = X Up|gn-1 €™
Veta: Nech f: X — Y je spojité zobrazenie, nech na X je relcia ekvivalencie ~g a na Y je relacia
ekvivalencie dané rovnostou. Ak f reipektuje dané relacie ekvivalencie, tak f : X/ ~p— Y ; f([2]) =
f(2) je dobre definované spojité zobrazenie.
Veta: Nech f : X — Y je spojité zobrazenie, ~g je relacia na X, ~g je relacia dand rovnostou na
Y. Ak pre kazdé z € X je mnozina f(p ![z]) jednobodovd, tak mdme dobre definované zobrazenie
fpil : X/ ~p— Y
o7 (&) = fp~'[2])
Veta: Nech A je uzavrety podpriestor priestoru X a f : A — Y je spojité zobrazenie. Nech ¢ : X — Z,

(3

A - X
¥ Y — Z sa spojité zobrazenia také, ze diagram | f 4 p komutuje.
y 4%z

Potom (¢ + ¢)p~! : Y Uy X = Z je dobre definované a spojité. [p +¢ : X +Y — Z je spojité
zobrazenie.

(p+¥)lx =@, (p+ )y =]

Veta: Nech Z je hausdorffovsky topologicky priestor a nech X je jeho uzavrety podpriestor taky, Ze
existuje relativny homeomorfizmus F : (D",8" ') — (Z,X) . Potom priestor Z je homeomorfny s
priestorom, ktory vznikne z X tak, Zze k X prilepime pomocou zobrazenie F'|gn—1 jednu n-rozmerni
bunku.

Tvrdenie: Projektivny priestor RP" sa dostane z RP"~! tak, ze k RP"~! vhodne prilepime jednu
n-rozmernt bunku, t.j. RP™ = RP" ! Ue™

(Z toho: RP™ =e®Ue' U---Ue ! Uen)

Suvislé a linearne suvislé priestory
Def: Topologicky priestor X # 0 je stvisly, ak okrem () a X v hom nie st iné obojaké (t.j. otvorené aj
uzavreté) mnoziny.
Def: Cesta v topologickom priestore X je fubovolné spojité zobrazenie ¢ : I =< 0,1 >— X |, presnejsie
¢ je cesta z bodu ¢(0) do ¢(1). Hovorime tiez, Ze ¢ sa za¢ina v ¢(0) a konéi v ¢(1).
Hovorime, %e zg,z1 € X sa daji spojif cestou v X, ak existuje cesta ¢ v X takd, Ze c¢(0) = z¢ a
C(l) =21-
opa¢na cesta k ¢: ¢(t) = ¢(1 —t)
spojenie ciest c a d:

1
c(2t) te<, 5>

cxd(t) =4 1
di2t—1) te< 5,1>



Lema: Nech X = A; U---UAy, kde vSetky A; st uzavreté v X. Potom fubovolné zobrazenie f : X —» Y
je spojité < f|a, je spojité prei =1,...,k.

Tvrdenie: Reldcia ~ definovani: x ~ y & existuje cesta v X z = do y, je relicia ekvivalencie.

Def: Trieda ekvivalencie priestoru X vzhladom na reldciu ekvivalencie ~ sa nazyva komponent
linearnej stuvislosti priestoru X.

X je linedrne suvisly, ak mé jediny komponent stvislosti (t.j. kazdé 2 body sa daja spojit cestou v
X).

Veta: Kazdy linearne suvisly topologicky priestor je stvisly.

Lema: Nech X # 0 je priestor taky, %e kazdé 2 body z X leZia v stvislom podpriestore. Potom X je
suvisly priestor.

Lema: Nech A C B C A. Ak A je stvisly, tak aj B je savisly.

Priestor X, kde X = {(z,sin(1)); € R}, je priklad priestoru, ktory je stvisly, ale nie je linedrne
suvisly.

Def: Pre dany topologicky priestor X oznacujeme IIg(X) mnoZzinu komponentov linedrnej stvislosti
priestoru X.

Tvrdenie: Nech f: X - Y je spojité. Ak X je linedrne stvisly, tak aj f(X) je linedrne stvisly.
Veta: Nech f: X - Y je spojité zobrazenie. Potom f zobrazi kazdy komponent linearnej stvislosti
priestoru X do nejakého komponentu linearnej stvislosti priestoru Y.

Teda f jednoznacne uréuje zobrazenie Il (f) : IIp(X) — T (Y) .

o () (K (x)) = K (f ()

Ak f je homeomorfizmus, tak IIo(f) : IIp(X) — IIp(Y) je bijekcia.

Lokalne linearne stvislé priestory
Def: Topologicky priestor X je lokalne linearne suvisly, ak kazdy jeho bod v kazdom svojom okoli
obsahuje linedrne suvislé podokolie.
Poznamka: Linearne savisly topologicky priestor nemusi byt lokalne linedrne suvisly.
Veta: Nech X je lokdlne linedrne suvisly topologicky priestor. Potom komponenty linedrnej stvislosti
priestoru X st otvorené aj uzavreté (obojaké).
Dosledok: Priestor, ktory je stvisly a lokdlne linearne sivisly je aj linedrne stavisly.

Homotdpia
Def: Nech f,g : X — Y s spojité zobrazenia. Hovorime, Zze f je homotopné s g (f ~ g, f sa dd
homotopicky zdeformovat na g), ak existuje spojité zobrazenie H : X x [ — Y také, ze H(z,0) = f(x),
H(z,1) = g(x) pre kazdé z € X.
H je homotdpia od f ku g.
Vlastne: Vt € I H definuje spojité zobrazenie h; : X =Y ; hy(z) = H(z,t).
To, ze H je spojité znamend to, Ze systém zobrazeni {h:}tcr je spojity.
To, Zze H je homotépia od f ku g znamend, ze ho = f a hy = g.
Def: Ak f,g: X = Y s spojité zobrazenia, také, Ze pre ddku podmnozinu A C X méme f(a) = g(a)
pre Va € A, hovorime, Ze f a g si homotopné rel A, ak existuje homotdpia H : X x I — Y taka, Ze
H(z,0) = f(x), H(z,1) = g(x) a H(a,t) = f(a) = g(a) pre Va € At € I.
H=homotdépia rel A od f ku g.
f~g(relA)
Tvrdenie: Na triede spojitych zobrazeni z X do Y (pre dané X, Y) je relacia ~ reldciou ekvivalencie.
Def: Triedy ekvivalencie ~ sa nazyvaji homotopické triedy zobrazeni z X do Y.
Veta: Spojité zobrazenie f : S® — X sa d& rozsirif na spojité zobrazenie F : D™ — X & f je
homotopné s kon§tantnym zobrazenim; f ~ const.
Def: Zobrazenie, ktoré je homotopné s kongtantnym zobrazenim sa tiez nazyva nula-homotopné (alebo
homotopné s nulou).
Veta: 1.Nech f,g: X - Y ,nech AC X a f|la =g|a.
Nech h: Y — Z je lubovolné spojité zobrazenie.
Ak f ~ g(relA), tak aj ho f ~ ho g(relA).
2. Vsituaciiz 1, ak k: W — X a f ~ g(relA), tak fok ~ gok(rel k~(A))
Def: Zobrazenie f : X — Y sa nazyva homotopicka ekvivalencia, ak existuje spojité zobrazenie
g:Y - X také, Ze go f ~idx, fog~idy.
(g sa tiez zvykne volaf Tavé homotopicky inverzné zobrazenie ku f a naopak, f a g st navzdjom homo-
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topicky inverzné.)

Priestory X, Y st homotopicky ekvivalentné (=maji ten isty homotopicky typ), ak existuje
homotopické ekvivalencia f : X — Y. Budeme oznaovat X ~ Y (v literattre aj X =Y")

Plati: Topologicky ekvivalentné topologické priestory st homotopicky ekvivalentné (homeomorfizmus je
homotopické ekvivalencia).

Tvrdenie: Relicia homotopickej ekvivalencie je relacia ekvivalencie na triede topologickych priestorov.
R" ~ {z}

Def: Ak A je topologicky podpriestor X ai: A< X ar: X — A je (spojité) také, Ze r oi = ids (t.].
r|a =ida), tak r sa nazyva retrakcia (stiahnutie) priestoru X na podpriestor A. (A je retrakt X.)
Ak r : X — A je retrakcia takd, Zze i or ~ idx, tak r sa nazyva deformaénd retrakcia. (A je
deformacny retrakt priestoru X).

Ak ior ~idx(relA), tak r je silnd deformaénd retrakcia.

Def: Priestor X sa nazyva kontraktibilny (stiahnutelny), ak pre ddke = € X plati, 7e {z} je defor-
macnym retraktom priestoru X.

Tvrdenie: Priestor X je kontraktibilny < X je homotopicky ekvivalentny s jednobodovym priestorom.
Tvrdenie: Priestor X je kontraktibilny < idx ~ const.

Tvrdenie: Nech f: X — 5" | n > 1 je spojité zobrazenie také, ze f(X) # S™. Potom f ~ const.
Tvrdenie: CX = X x I/X x {1} je kontraktibilny.

Fundamentalna grupa topologického priestoru
Def: Q(X,z0) = mnoZina vSetkych ciest v X, ktoré za¢inaja aj konéia v xq.
Prvky z Q(X, z¢) sa nazyvaja slucky.
Veta: Nech¢,d: I — X st cesty také, ze ¢(1) = d(0) anech ¢/, d’' : T — X s cesty také, ze ¢'(1) = d'(0).
Ak ¢~ (rel{0,1}) a d ~ d'(rel{0,1}), tak cx d ~ ¢’ = d'(rel{0, 1}).
Okrem toho: ¢~ ~ ¢ rel{0,1}
Daosledok: Na mnoZine homotopickych tried rel{0,1} sluciek priestoru X v bode zo predpis [¢] - [d] =
[c % d] dobre definuje bindrnu operaciu.
Lema: Nech ¢: I — X je cesta. Nech o : I — I je spojité zobrazenie také, ze a(0) = 0, a(l) = 1.
Potom co a ~ ¢(rel{0,1}).
Def: Nech ¢,d: I — X s 2 cesty v X také, ze ¢(1) = d(0). Nech ¢ € (0,1). Potom definujeme novt
cestu ¢ *, d.

t
e(-) te<0,qg>
cxgd(t) ={
d(——) te<qg 1>

Veta: Nech ¢,d: T — X sa 2 cesty v X také, ze ¢(1) = d(0). Nech ¢ € (0,1). Potom (c*,d) o = cx*d
pre vhodné a: I — I ; a(0) =0, a(1) = 1. Cize cx,d ~ c x d(rel{0,1}).

Veta: Nech ¢, d, f st také cesty v X, Ze sa daju skladat. Potom: (¢*d) x f ~ cx (d * f)rel{0,1}.
Déosledok: Operacia - na mnozine homotopickych tried rel{0,1} sluciek v zy € X definovand pomocou
spajania ciest je asociativna.

([c] - [d]) - [f] = [e] - ([d] - [£]) pre Tubovolné c,d, f € UX, z0).

Veta: Nech c¢: I — X je cesta v X a nech ¢(0) resp. ¢(1) st konstantné cesty v ¢(0) resp. ¢(1). Potom
c(0) * ¢ ~ ¢ rel{0,1},

cxc(l) = ¢ rel{0,1}.

Dosledok: Konstantna slucka v zp € X je neutrdlnym prvkom operacie - na mnozine homotopickych
tried rel{0,1} sluciek v zy € X.

Veta: Pre lubovolnt cestu ¢: I — X.

cxc” ~¢(0) rel{0,1}

¢ xc~c(l) rel{0,1}

Dosledok: Pre ¢ € Q(X, zo) mame, 7e [¢7] = [¢] "

Veta: Nech X je topologicky priestor, pevne zvolme zo € X. Ak na mnozine homotopickych tried
rel{0,1} sludiek priestoru X v bode z, definujeme operéciu - predpisom [c] - [d] = [c * d], tak dostaneme
z tejto mnoziny grupu; oznacme ju 7 (X, o).



Def: Grupa 7(X,zo) sa nazyva fundamentélna grupa priestoru X v bode zy (s referenénym (ba-
zovym) bodom ).

Zavislost 7(X, o) od g
Def: Ak r : I — X jecesta v X, r(0) = z1, (1) = =0, definujeme a, : Q(X,z9) = QX,z1),
ar(c) =rxcxr .
Toto zobrazenie indukuje zobrazenie fundamentalnych grap:
a, (X, x0) = (X, x1)
aple] =[rxexrT]
Tvrdenie: «a, : 7(X,z9) = 7(X,z1)
1. je homomorfizmus griap
2. je izomorfizmus grap
3. a, 7avisi od homotopickej triedy rel{0,1} cesty r.
4. Ak s: I — X je cesta z x; do zp, tak a, a as sa liSia o vntorny automorfizmus grupy = (X, z;)
(Teda ak w(X,z1) je komutativna, tak médme «, = ag, t.j. izomorfizmus 7 (X, z9) = 7(X,x1) nezdvisi
od vyberu cesty z xo do x; (ak taka cesta existuje).)
Désledok: Ak priestor X je linedrne suvisly, tak pre fubovolné zo, 1 € X méme 7(X,xg) = 7(X, z1)-
(vo v8eobecnosti tento izomorfizmus nie je kanonicky - zavisi od homotopickej triedy rel{0,1})
Potom 7 (X, z¢) oznaujeme 7(X).
Lema: Nech ¢,d : I — X sa uzavreté cesty a nech H : [ x I — X je homotdpia od ¢ ku d taka, Ze
H(0,s)=H(l,s)Vse I
(=t.j. cez uzavreté cesty). Nech h: I — X je cesta definovand ako h(s) = H(0,s) pre s € I.
Potom ay([d]) = [c].
Def: Pre spojité zobrazenie f : X — Y, definujeme
m(f) : 7 (X, o) = (Y, f(z0))
m(f)([c]) = [f o ]

Tvrdenie: 7(f) : 7(X,z9) = 7(Y, f(x0)) je homomorfizmus grap.

x Ly
Ak g : Y — Z je spojité, tak w(g o f) = w(g) o w(f). T.j. ak diagram \} 1 9 komutuje, tak
go
A
w(f)
W(Xa 170) -3 ,/T(Ya f(ill‘g))
komutuje aj N\ +7(g)
m(gof)

’/T(Za gf(xo))
Okrem toho m(idx) = idy(x )

Veta: Nech f: X =Y, g: X — Y sispojité zobrazenia, nech xg € X. Nech f~ga H: X xI =Y
je homotdpia od f ku g. Definujme cestu h : I — Y, h(s) = H(zo,s). (cesta z f(xo) do g(zo)) Potom
apom(g) =n(f) a ayp, je izomorfizmus.

w(X,20) % w(Y,g(z0))
Ef) Jbap =

W(Ya f(a:O))

Daosledok: 7(g) je izomorfizmus < 7(f) je izomorfizmus.

Veta: Nech X,Y maju ten isty homotopicky typ. Potom ich fundamentalne grupy si izomorfné.
Désledok: Fundamentalna grupa Tubovolného kontraktibilného priestoru je trividlna.

Tvrdenie: Nech X, Y st topologické priestory, nech zg € X, yo € Y. Potom 7(X x Y, (zo,%0)) =
(X, z0) X m(Y, yo)-

Fundamentalna grupa kruZnice
Veta: 7(S1,1) 2 Z.
Lema: Oznaéme ® : R — S', ®(t) = e®™ Nech ¢: I — S' je lubovoln4 slucka v 1. Potom existuje
jedind cesta ¢ : I — R takd, Ze: ¢(0) =0 a ® o ¢ = ¢. (¢ sa nazyva zdvih cesty ¢ do R.)
Tvrdenie: V situécii z predchddzajicej lemy je é(1) € Z.
Veta: Nech c,d € Q(S*,1) stt homotopné rel{0, 1}. Nech H : I x I — Sl~ je homotdpia rel{0,1} od ¢
ku d. Potom existuje jedind homotdpia rel{0,1} H: I x I - R od ¢ ku d takd, 7e o H = H.
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Dosledok: Ak [c] = [d] € 7(S, 1), tak & ~ d(rel{0,1}), a preto &1) = d(1). Teda predpis [¢] — &(1)
dobre definuje zobrazenie y : m(S) — Z.

Tvrdenie: X je izoomorfizmus grap.

Tvrdenie: S* nie je retraktom gule D?.

Tvrdenie: Torus T mé fundamentalnu grupu 7 (T') = Z2.

Obehové éislo uzavretej krivky v C
Def: Necha € C, nech ¢ : I — C—{a} jeuzavreta krivka. Definujme spojité zobrazenie r, : C—{a} — S!
) = 2=
Potom 7, 0c: I — St je slucka v St v bode r,(c(0)) = ra(c(1)) ar,oc € m(S*,r,(c(0)). S je linedrne
stvisly a h : I — S' je Tubovolné cesta z 1 do r, o ¢(0). Pretoze w(S*,1) je komutativna existuje
kanonicky (nezavisly od volby h) izomorfizmus ay, : 7(S*,r, 0 ¢(0)) — = (S*,1).
Potom ay, o 7(r,)[c] € m(S*, 1), ¢ize pomocou x moZno priradit jednoznaéné ¢islo.
Def: V situicii popisanej vyssie sa celé ¢islo y o oy, 0 (7, )[c] nazyva obehové €islo uzavretej krivky ¢
vzhladom na a.
Oznacdujeme p(c, a)
Poznamka: p(c,a) znamend pocet obehov okolo bodu a pri prejdeni po krivke ¢ z ¢(0) do ¢(1).
Tvrdenie: p(e*>™* 0) =k
Veta: Nech ¢,d: I - C— {a} st 2 uzavreté cesty a nech H : I x I - C —{a} je homotdpia od ¢ ku d
cez uzavreté krivky, t.j. H(s,0) = H(s,1)Vs € T
Potom p(c,a) = p(d, a)
Veta: (E.Rouché) Nech ¢,d : I — C — {a} st uzavreté cesty také, 7e |c(t) — d(t)| < |c(t) — a|. Potom
ple,a) = p(d,a). (a nelezi medzi ¢(I) a d(I).)
Veta: Nech f: D? — C je spojité zobrazenie. Definujme uzavrett cestu c: I — C , c(t) = f(e27%).
Potom ak p(c,a) # 0, tak a € f(D?)
Veta: (Zakladna veta algebry) Polyném p(z) = 2% + ap_12¥" +---+ajz+ag pre k > 1, ag # 0,a; € C
ma koren v C.

Seifert-Van Kampenova veta
Def: Nech A,B,C' st grupy a f : A - B, g : A — C st homomorfizmy grip. Potom hovorime, ze

A1 .p
diagram grap a homomorfizmov medzi nimi gl ul sa nazyva pushout dvojice (f,g), ak
c —— G
1. komutuje, t.j. uo f =vog
A1 .p
2. Pre Tubovolni grupu G’ a homomorfizmy v’ : B — G', v' : C — G’ také, ze gl url komutuje,

cC —— @

existuje jediny homomorfizmus h : G — G' taky, ze hou =u', hov ="

A1 .p
Tvrdenie: Ak diagram gl ul je pushout dvojice homomorfizmov (f,g), tak G je urcend jed-

c 2= G
noznacne odhliadnuc od izomorfizmu. (Preto sa tieZ hovori o G ako o pushoute dvojice (f,g).)
Veta: (Seifert-Van Kampen) Nech X je linedrne stuvisly priestor a nech X;, X5 st jeho otvorené pod-
priestory také, ze Xo := X1 N Xy £ 0, X; UXs = X. Nech Xy, X1, X5 st linedrne stvislé. Oznaéme
i1 : Xo = Xl, is 1 Xog <= XQ, j1 X = X, j2 : X5 — X inklazie. Potom diagram

i

Xo =& Xi
izl ln
J2
Xo & X

komutuje.
Pre zp € X je diagram indukovany predchddzajicom diagramom pushoutom t.j.
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7(Xo, o) T, (X1, 20)

ﬁ(il)l ln(jl) je pushout dvojice (7 (1), m(i2))-

7(Xa,m0) 2L (X, 1))

Veta: Nech X je linedrne stvisly priestor a nech f : S" ' — X (n > 2) je spojité. Ozna¢me Y =
)(lJfl)n.

Potom (pre yo € Y): n(Y,y0) = 7(X, f(1,0,...,0))/N(x(f)(xw(S*1,(1,0,...,0))))

Lema: (Whitehead) Nech X a Y st topologické priestory. Nech f: X — Y je surjektivne zobrazenie.
Ak topoldgia YV je faktorovd vzhladom na f, tak potom pre kazdy lokdlne kompaktny priestor A m4
priestor X x A faktorovi topolégiu vzhladom na zobrazenie f x ida : X x A - Y x A.

Désledok: Ak n > 2, tak 7(S™) = 0.

Def: Priestor, ktory mé trividlnu fundamentilnu grupu, sa nazyva jednoducho suvisly priestor.
Désledok: Nech X je linedrne stvisly a Y = X Uy D™, n > 3. Potom 7(X) = «(Y).

Veta: ©(RP") = Z/2Z (n > 3).

Pr: Prikladom priestoru, ktory ma nekomutativnu fundamentédlnu grupu je osmicka, resp. homotopicky
ekvivalentny priestor R? \ {(0,1), (0,-1)}.

Kategdrie
Def: Kategdria C pozostava z triedy objektov Obj(C) (prvky Obj(C) - objekty kategdrie C) a pre
kazda dvojicu (X,Y") € Obj(C) x Obj(C) z mnoziny C(X,Y) (jej prvky st morfizmy 7z X do Y) pricom,
ak (X,Y) # (X',Y"), tak C(X,Y)NC(X',Y") = () a st splnené tieto podmienky:
1. Pre (X,Y),(Y,Z) € Obj(C) x Obj(C) je definované
0:C(X,Y)xC(Y,Z) = C(X,2)
- tzv. skladanie morfizmov, pricom
a) Ak f € C(X,Y),g€C(Y,Z), heC(Z,W), tak

(hog)of=ho(gof)

(axiéma asociativnosti).
b) Pre kazdé X € Obj(C) existuje jediny morfizus idx taky, ze

foidx = f

pre kazdé f € C(X,Y) a
idy o f=f

pre kazdé f € C(X,Y). (axiéma identity)
Ak feC(X,Y), tak X sa nazyva defini¢ny obor a ¥ obor hodnot.
Def: Ak go f = idx, tak g je lavy inverzny k f a f je pravy inverzny ku g. Morfizmus, ku ktorému
existuje pravy aj lavy inverzny sa nazyva izomorfizmus.
Def: Kovariantny funktor z kategorie C do kategérie D je funkcia T : C — D , ktord kazdému objektu
X € 0bj(C) priradi T'(X) € Obj(D) a kazdému morfizmu f € C(X,Y) priradi T(f) € D(T(X),T(Y)),
pricom:
L. T(go f)=T(g)oT(f)
2. T(idx) = idp(x)-
Def: Kontravariantny funktor z kategérie C do kategérie D je funkcia T : C — D , ktorad kazdému
objektu X € Obj(C) priradi T(X) € Obj(D) a kazdému morfizmu f € C(X,Y) priradi T(f) €
D(T(Y), T(X)), pricom:
1. T(go f) = T(f) o T(g)
Def: Direktny siéin grip [] G, = kartezidnsky stéin s operdciami definovanymi po zlozkach.

aEA
Direktny sucet grap - ako dierektny sucin, ale len kone¢ny pocet indexov je nenulovy.
Ak méame G, podgrupy G a G, U @ Gp = {0}, tak direktny sucet € tvoria siucty prvkov z G,.

B#a a€A

Def: Volna abelovska grupa generovand mnozinou M - ozn. Z < M >.
Baza=taka mnozina, ze kazdy prvok v grupe je celo¢iselnou kombinaciou prvkov z bazy.
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Ak existuje baza v grupe G, tak G sa nazyva voln4.

rang grupy G (volné abelovskd grupa generované kone¢nou mnoZinou) = pocet prvkov bézy.

Def: Z-graduovana abelovska grupa je systém G = {G, }acz, kde G, st abelovské grupy.

Ak G,H st graduované abelovské grupy, tak homomorfizmus graduovanych grip f: G — H je systém
{fa : Go = Hy}aez, kde kazdé f, : G, — H, je homomorfizmus abelovskych grip.

Def: Torzna podgrupa = podgrupa prvkov kone¢ného radu abelovskej grupy A.

Konec¢ne generovant grupu moZzeme zapisat v tvare: AZZ P---PLPZk, P --- P Zy,, cize ako stet
volnej Casti a torzie.

rang(A) = pocCet s¢itancov vo volnej Casti.

Exaktné postupnosti homomorfizmov abelovskych griap

Def: Postupnost G/ = G LNVl abelovskych grip a homomorfizmov medzi nimi je exaktna v G, ak
Ker(B) = Im(a).

Def: Postupnost ...G_y 2N G 2 G2 G,. .. abelovskych grap a homomorfizmov medzi nimi je
exaktna, ak kazdé postupnost G, == Gry1 —% Grys je exaktnd v Gny1. (Vo € Z).

Def: Exaktna postupnost 0 = G’ = G LNV abelovskych grip a homomorfizmov medzi nimi sa

nazyva kratka exaktni postupnost.

Tvrdenie: a) Postupnost 0 = A % B je exaktni < « je monomorfizmus grip.
b) Postupnost A % B — 0 je exaktna < « je epimorfizmus grip.

¢) Postupnost 0 = A = B — 0 je exaktnd < a je izomorfizmus grip.

[e3

Veta: Nech 0 5 G' 5 G 5 6" =0 je kratka exaktnd postupnost. Potom nasledujice 2 podmienky
st ekvivalentné:

i) existuje homomorfizmus A : G — G taky, ze B o A = idgn.

ii) existuje homomorfizmus u : G — G’ taky, ze po a = idg.

Navyse, ak plati hociktora z podmienok i,ii, tak G =2 G' & G".

Def: V situacii z vety, ak plati hociktora z podmienok i,ii, tak hovorime, ze dand kratka exaktna
postupnost sa Stiepi (je rozstiepend).

A, i - Stiepiace zobrazenia

Lema: (5-Lema) Nech je dany komutativny diagram grip a homomorfizmov medzi nimi

A B c D E
Pl
AI BI OI DI El

s exaktnymi riadkami. Ak f,g,k,[ st izomorfizmy, tak aj h je izomorfizmus.

Refazcové komplexy
Def: A, = g-rozmerny Standardny simplex = konvexny obal koncovych bodov bazovych vektorov

q
€g,-..eq v IRITL = {(to, ... t,);t; >0, t; =1}.
=0

Body ey, ..., e, sa volaji vrcholy A,.

Mnozina {(to,...,t;) € Ag; t = 0} pre déke i sa nazyva i-ta stena simplexu Ay, lezi oproti vrcholu e;.
Definujeme zobrazenie d; : A, 1 — Ay d;(to,...,t;-1) = (to,-.-,ti-1,0,ti41,...,t,1) pre kazdé i =
0,...,q. (tzv. stenové zobrazenie)

Lema: i,j € {0,1,...,q} také, 7e j < i méme d\ od’_; =dJ od)}.
Def: Singuldrny ¢-rozmerny simplex topologického priestoru X je spojité zobrazenie f: A, — X.
S;(X):= volné abelovska grupa generovand mnozinou vSetkych g-simplexov priestoru X pre ¢ > 0 a
Sy(X) :=0pre g <0.
Definujme homomorfizmus
8; 1 Sq(X) —>.Sq_1(X)
0y(f) = fod,prei=0,...,q
Definujeme hraniény operator:
0y + Sq¢(X) = Sy—1(X)
a

0, = Y (—1)di, ak ¢ > 0, inak 9, = 0.

=0



Veta: 9, 0 9,41 = 0 pre vietky ¢ € Z.

Def: Prvky z S,(X) sa volaji g-rozmerné singuldrne retazce priestoru X.

Def: Postupnost S(X) = (S,(X),8,)4ez sa nazyva singuldrny retazcovy komplex topologického
priestoru X.

Pre spojité zobrazenie f : X — Y definujeme Sy(f) : Sq(X) — Sy(Y), Sy(f)(T) = foT pre ¢ > 0, pre
g < 0 je Sy(f) nulové zobrazenie.

Veta: Ak f: X - Y je spojité, tak diagram

B4 Bg1
—— 5(X) ——=5;_1(X) ——= Sg_2(X) ——

lsq(f) \qu_l(f) lsq—ﬂf)

— = S5,(Y) —> 85, 1 (V) =5, 5(YV) —

komutuje, t.j. Yq € Z méme Sy_1(f) 0 9y = 8, 0 Sy(f).

Tvrdenie: Ak f: X =Y ,g:Y — Z st spojité, tak Sy(go f) = S;(g) 0 Sy(f) a Sy(idx) = ids, (x)-
Def: Retazcovy komplex je postupnost K = (K, 9,)qez, kde K, st abelovské grupy a d, : Ky — Ky_1
je homomorfizmus grip (pre vetky g € Z) taky, Ze 9,1 0 9; = 0.

Ak K = (K;,04)qez, L = (Lg,04)4ez s dva refazcové komplexy, tak homomorfizmom retazcovych
komplexov z K do L rozumieme postupnost f = (f;)qez homomorfizmov f, : K, — L, takych, ze
040 fqg = fy—1 004 pre Vq € Z.

Struéne hovorime o homomorfizme retazcovych komplexov f : K — L.

(0y4 sa aj tu vold hraniény operator).

Tvrdenie: Je jasné, 7e ak f : K — L, g : L - M st homomorfizmy retazcovych komplexov, tak
ajgof: K — M je homomorfizmus retazcovych komplexov, idx : K — K je tiez homomorfizmus
retazcovych komplexov.

Def: K=kategoria vsetkych retazcovych komplexov a homomorfizmov medzi nimi.

Def: Retazcovy komplex E taky, ze Ey = Z a E, = 0 pre ¢ # 0 sa nazyva augmentaény komplex.
”Méme refazcovy komplex, ktory vyzerd neskodny, a Skodny vcelku nie je, ale je uzito¢ny.” (J.K.)

Def: Nech K = (K,,0y)q4ez je retazcovy komplex. Potom oznatme Z,(K) := Ker(d,), By(K) :=
Im(8q+1).

Tvrdenie: By(K) je podgrupa grupy Z,(K).

Def: Z,(K)=grupa g-cyklov retazcového komplexu K.

B,(K)=grupa g-hranic retazcového komplexu K.

Def: Ak K = (K,,0,) je retazcovy komplex, tak faktorova grupa H,(K) = Z,(K)/By(K) sa nazyva
g-ta grupa homoldgii (¢-ta homologicka grupa) komplexu K.

Jej prvky oznacujeme [c] € H,(K).

Def: Relacia ekvivalencie na grupe Z;(K) urcena podrupou B, (K) sa nazyva homoldgia.

c,d€ Zy(K): cxd&c—de By(K) < c—d=0441(a) pre déke a € Kypq.

Hovori sa vtedy, ze ¢ a d st homologické.

Tvrdenie: Nech K = (K;,0,)4ez, L = (Lg4,0q)qcz sa refazcové komplexy, nech f : K — L je
homomorfizmus retazcovych komplexov. Potom:

1.(2,(K)) C Z,(L)

f(By(K)) C By (L)

Veta: Ak f: K — L je homomorfizmus retazcovych komplexov, tak predpis [c] — [f;(c)] dobre definuje
homomorfizmus grap H,(f) : Hy(K) — H,(L).

Def: Homomorfizmus Hy(f) : Hy(K) — Hy(L) z predchddzajicej vety sa nazyva homomorfizmus
homologickych grip indukovany homomorfizmom retazcovych komplexov f: K — L.
Tvrdenie: Ak f: K — L, g : L — M st homomorfizmy retazcovych komplexov, tak pre kazdé q € Z
mame:

Hy(go f) = Hy(g) o Hy(f)

Hq(ZdK) = 'Lqu(K)

Maéame teda kovariantny funktor H : K — GradAb.

Singularne homologické grupy topologickych priestorov
Def: Nech X je topologicky priestor. Potom ¢-ta singuldrna grupa homoldgii priestoru X sa
definuje ako Hy(X) := H,(S(X)) pre Vg € Z. Ak f : X — Y je spojité zobrazenie, tak mame ho-
momorfizmus singuldrnych refazcovych komplexov S(f) : S(X) — S(Y); definujeme homomorfizmus
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singuldrnych grap homoldgii ako H,(f) := H,(S(f)) : Hy(X) — Hy(Y). H,(f) sa nazyva homomor-
fizmus singularnych grip homoldgii indukovany spojitym zobrazenim f: X — Y.

Samozrejme H,(f o g) = Hy(f)o Hy(g), Hy(idx) = idp, (x), teda Hy : Top — Aba H : Top — GradAb.
Tvrdenie: Ak P je jednobodovy priestor, tak

Z,ak ¢q=0
Hq(P>={

0,ak g #0

~

Veta: Nech X je linedrne stvisly priestor. Potom Hy(X) = Z.
Déosledok: Nech {X,}aeca je systém komponentov linedrnej stvislosti priestoru X. Potom H,(X)
[1 Hy(Xa).
acA
Daosledok: Ho(X) = P 7Z
acA
Daosledok: X je linearne suvisly < Hy(X) =2 Z

~

Singularne homologické grupy parov priestorov
Def: Nech K = (K, 0,)qez je retazcovy komplex. Jeho retazcovy podkomplex je refazcovy komplex
K' = (K, 0;)q4ez taky, ze pre kazdé ¢ je K C K, podgrupa a 0; = Og|k;. (Definicia hovori aj to, ze

7' Y%
0q(Kq) € Kq_y.)
Veta a definicia: Nech K' = (K_,0,)4ez je podkomplex refazcového komplexu K = (K, 0y)qez.

Potom predpis [] — [9,(z)] dobre definuje operator 8, : K¢/K} — K,_1/K|_,. Plat{ 8,1 0 8, = 0 pre
vetky g € Za K/K' := (Kq/K,’I,B_q)qu je retazcovy komplex, je to tzv. faktorovy komplex komplexu
K podla K'.

Def: Specialne, ak X je topologicky priestor a A jeho topologicky podpriestor, tak (S,(X)/S,(A),9,)qez
je refazcovy komplex, tzv. relativny retazcovy komplex paru (X, 4).

Def: Postupnost retazcovych komplexov a homomorfizmov medzi nimi sa nazyva exaktna, ak pre kazdé

q € 7 dava exaktnt postupnost griup a abelovskych homomorfizmov medzi nimi.
[e]

Veta: Nech 0 — K’ % K 2 K" 5 0 je kréatka exaktnd postupnost refazcovych komplexov. Potom

v homologickych grupach mame exaktni postupnost H,(K') Hal), H,(K) Ha(B), H,(K'") pre kazdé

q € 7.
Najskor definujeme homomorfizmus 0, : Z4(K") — Hy—1(K'). Nech z € Z,(K") je Tubovolny cyklus.
By : Ky — K je epimorfizmus, teda existuje y € K, pre ktoré f,(y) = z. Dalej sa ukaze, ze 0,(y) €
Ker 3,1 = Ima, ;. Teda existuje jediné u € K;_;, ze ag—1(u) = J,(y). Ukdze sa, ze u je cyklus, ze
definicia §,(z) = [u] je dobré, ze 0,(B,(K")) = 0. Potom sa definuje 0., : Hy(K") — H,_1(K') ako
Ouq([z]) = 04 ().

Veta: Nech 0 — K' % K 5 K" 50 je exaktnd postupnost. Potom postupnost — Hy41(K")

Hq(K/) HQ(O‘) Hq(K) HQ(B) Hq_l(a)

Ou(q+1)

o. . .
——5 H,(K") —% H,_1(K') —/— je exaktnd.
Def: Postupnost z predchadzajtcej vety = dlhd exaktnd postupnost indukovand krétkou exaktnou
«,

postupnostou retazcovych komplexov 0 -+ K' — K 5 k" 0.

Oiq - spajajici homomorfizmus

Veta: Nech 0 » K’ S K 5 K" 50a0 = L' 5 L5 L" &5 0 st krdtke exaktné postupnosti
retazcovych komplexov. Nech v : K/ - L', v: K — L, v" : K" — L" st homomorfizmy retazcovych
komplexov také, ze diagram

0 s KN — Yy g B, g s 0
ol
0 N VLN SN ¥ s 0

(=kratky komutativny rebrik s exaktnymi riadkami) komutuje. Potom diagram (dlhy komutativny rebrik
s exaktnymi riadkami)

Hq(B)

Ou(q xq
() Hy(K) 229 gk —2 Hy_ (K —— ..

S Hya(K") 2 g iy

Hypr(7") l Hy(+') l qu)l Hq(v”)l Hqﬂ(v')l
O q gk q *q
S Hy(r7) 2oy gy gy 2 om0 ——

komutuje.

H,y(L)
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Tvrdenie: Ak X je topologicky priestor, A C X je topologicky podpriestor X, tak postupnost

Hq(l) Hq(X) Hq(.]) Hq(X, A) 8*(1 qul(A) HQ*l(i)

- Hq(A)
je exaktna.
Def: Je to tzv. dlh4 exaktni postupnost topologického paru (X, A).

Def: H,(S(X,A)) =: Hy(X,A) je ¢g-ta singuldrna (relativna) homologickd grupa topologického
paru X, A.
Veta: Ak f: (X, A) — (Y, B) je zobrazenie parov, tak mame komutativny rebrik s exaktnymi riadkami

H,(i H,(j Bug
MO goxy LY g x,a) 2 B, (A)

qul(X) _— ...

. —— Hy(A)
| atsi |70 | 0 |-

oo —— H,B) Y m vy LY g v,B) 2 H,_\(B)

Okrem toho: ak f: (X,A4) = (V,B), g: (Y,B) — (S,(), tak

Hy(go f) = Hy(g) o Hy(f)

Hq(id(XA)) = iqu(X7A), pre q € Z.

Teda vlastne mame kovariantny funktor H, z kategdrie parov priestorov a spojitych zobrazeni medzi
nimi do kategdrie GradAb.

Def: Trojicou priestorov budeme rozumiet trojicu (X, A, B), kde X je topologicky priestor, A a B
s jeho topologické podpriestory a B C A.

— Hy(A,B) RiLION H,(X,B) Halo), H,(X,A) Oea, H,_1(A,B) — ... je dlha exaktni postupnost

trojice (X, A, B).
Tvrdenie: Nech (X, A) je topologicky par, nech {X,}aca je systém komponentov linedrnej savislosti
X. Oznacme A, := X, N A. Potom:

Hy(X, A) = D Hy(Xa, Aa)
a€A

Vlastnosti singuldarnej homologickej tedrie
Veta: Singularnou homologickou tedriou rozumieme dvojicu (H, 0, ), kde H je kovariantny funktor
z kategdrie parov topologickych priestorov a spojitych zobrazeni medzi nimi do kategérie GradAb, a 0, je
pre kazdé ¢ € Z homomorfizmus 0., : Hy(X, A) = H,_1(A), pricom s splnené nasledovné podmienky:
1. prirodzenost d,: Pre kazdé f : (X, A) — (Y, B) diagram

B

H, (X, A) —2 H,_(A)

Hq(f)l lqul(fm
B

H,(Y,B) —="s H,_\(B)

komutuje (pre kazdé ¢ € Z)
2. Pre kazdy par (X, A) mame exaktnti postupnost

Hyq(#)

.= Hy(A) — Ha7)

Hy(X) 229 o (x, A) 2% H o (A) — .

3. Homotopicka vlastnost Ak f,g: (X, A) — (Y, B) stt homotopné (t.j. existuje H : (X x I, Ax ) =
(Y, B) spojité, také, ze H(x,0) = f(x), H(z,1) = g(x), z € X), tak H,(f) = H,(g) pre vSetky q € Z.
4. Excizia - vyrez Nech (X, A) je par priestorov a nech U C A je také, ze U C A. Potom inkltzia
J: (X -U,A-U) — (X, A) indukuje izomorfizmus H,(j) : Hy(X —U,A—-U) — H,(X, A) pre vSetky
q € 7.

5. Vlastnost dimenzie Ak P je jednobodovy priestor, tak
Z,ak ¢q=0

(P = {
0,ak ¢ #0

6. Aditivnost: Nech (X, A) je par priestorov, nech {X,}aeca je systém otvorenych podmnozin v X

takych, ze |J Xo = X. Oznacéme A, = AN X,. Potom
aEA

Hy(X, A) = @) Hy(Xa, Aa)

acA
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Dosledok: Ak X je kontraktibilny, tak
Z,ak ¢q=0
Hq(X) = {
0,ak g #0

Redukované singularne homologické grupy
Def: Nech P je jednobodovy priestor a nech X je fubovolny priestor. Ozna¢me kx : X — P. Oznac¢me
H,(X) = Ker(Hy(kx)).
Potom podgrupa fIq(X ) grupy H,(X) sa nazyva ¢-ta redukovana singuldrna homologicki grupa
priestoru X.
Veta: Pre g # 0 mame H,(X) = H,(X) a Hy(X) @ Z = Hy(X).
Teda 8pecidlne: Ak X je linedrne stvisly, tak Ho(X) = 0. (aj obrétene)
Veta: Ak (X, A), kde A # 0, je par priestorov, tak mame exaktni postupnost ... — fIq(X, A) Hq—(l)>
i,(x) 29, g (x, 4) 2 1, (A).
Veta: Nech n > 0. Potom

- Z q=n
H,(S™) =
o(5%) { 0 ¢#n
Lema: H,(iy) : Hy(D%,S™ ') — H,(S™, D™) je pre Yq € Z izomorfizmus.
Désledok: z
H, (D", 5" = { 1=
0, ¢#n
Désledok:

Z, q=n
0, qg#n

Veta: Ak sféry S™, S™ st homotopicky ekvivalentné, tak m = n.

Veta: Ak R™, RF st homeomorfné, tak m = n.

Lema: Pre par (X, A) mame H,(X) = H,(A) @ H,(X, A), ak existuje retrakcia X na A.

Désledok: Sféra S™~! nemoze byt retrakciou gule D™.

Veta: (Brouwerova veta o pevnom bode) Pre kazdé spojité zobrazenie f : D™ — D" existuje zo € D™ :
f(ill‘()) = Xyp.

Def: Nech X je topologicky priestor taky, ze vSetky homologické grupy H,(X) st kone¢ne generované,
pricom iba konetne vela z nich je nenulovych. Potom b, = rang(H,(Z X)) (pocet kopii Z vo volnej Casti).

H, (R, R" — {0}) = {

o0 .
Potom Eulerova-Poincarého charakteristika X je celé ¢islo x(X) = Y (—=1)"b; = bg—b1+ba—b3+. ...
=0

Veta: Nech X je linearne savisly priestor, nech xo € X. Potom plati:
Hy (X) = 7(X, 20)/[w(X, 20), (X, 20)]

Speciélne, ak 7(X) je komutativna, tak H;(X) = 7(X).
Singularne kohomologické grupy
Def: Nech X je topologicky priestor.
Sn(X) - grupa n-rozmernych singuldrnych refazcov topologického priestoru X
(grupa generovand n-rozmernymi simplexami)
Definujeme: S™(X) := Hom(Sn(X),Z)
S™(X) je dudlny modul k modulu S, (X)
S"(X) sa nazyva grupa n-rozmernych korefazcov.
Hodnotu singularneho koretazca ¢ € S™(X) na refazci a € S, (X) oznacujeme < ¢, >€ Z.
<, > S™(X) x Sp(X) — Z je tzv. parovacie zobrazenie
Definujeme homomorfizmus §, : S*(X) — S™1(X) predpisom < 6,¢,7 >:=< ¢, 0,17 > pre fubovolné
c € S"X), € Spr1(X).
0n je kohraniény operator
(S™(X),d,) je koretazcovy komplex
Z™"(X) = Keré,
B"(X)=Imbp_1
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Tvrdenie: 0,41 06, =0

Désledok: Pre kazdé n € Z je Imd,, C Kerd,i1

Def: Faktorova grupa Z"(X)/B™(X) =: H"(X) sa nazyva n-td singuldrna kohomologickd grupa
priestoru X (grupa singuldarnych kohomoldgii).

Def: Ak f: X — Y je spojité a S, (f) je singuldrny refazec indukovany zobrazenim f, tak definujeme
zobrazenie S™(f) : S*(Y) — S™(X) predpisom < S™(f)(d),8 >:=< d,S.(f)(B) > pre d € S™(f),
S™(f)(d) € S™(X), B € Sp(X).

In4¢ povedané: S™(f)(d) = do S,(f).

Def: Homomorfizmus hy, : S?(X) — S*(Y) sa nazyva koretazcovy homomorfizmus, ak diagram

SMX) o S(Y)

‘W ‘W
Srtl(x) Lmtty gy

komutuje.

Tvrdenie: f: X — Y je spojité = homomorfizmus S™(f) : S"(Y) — S™(X) definovany vyssie je
koretazcovy homomorfizmus.

Désledok: Ak f : X — Y je spojité zobrazenie, tak koretazcovy homomorfizmus S™(f) : S*(Y) —
S™(X) zobrazuje kocykly do kocyklov a kohranice do kohranic.

Def: Ak f: X — Y je spojité, tak homomorfizmus H"(f) : H"(Y) —» H™(X), n € Z dany predpisom
[c] = [S™(f)(c)] sa nazyva homomorfizmus singuldrnych kohomologickych grip indukovany spojitym
zobrazenim f.

LCahko sa overi, ze ak f: X - Y, g:Y — S s spojité, tak H*(go f) = H"(f) o H"*(g) a H"(idx) =
idgn (x), Cize je to kontravariantny funktor z kategérie Top do kategérie GradAb.

Exaktnost: Pre kazdy par (X, A) mame exaktnt postupnost

5 . i 5
o HONA) 2y gox, A) 229 ooy 2O ey Doy

kdei:A— X, j:(X,0) = (X,A) st vlozenia a 0;_; : H""'(A) - HY(X, A)
Homotopicka vlastnost Ak (X, A4),(Y, B) st homotopicky ekvivalentné H?(X, A) = H(Y, B)
Prirodzenost: Ak f: (X, A) — (Y, B) je spojité zobrazenie, tak mdme komutativny rebrik s exaktnymi

s He(4) 2, gox, 4) 2 RN

), pacx) HI(A) 2y
riadkami: lHq_l(f\A) lHq(f) lH"(f) lH"(flA)

* *

. H"'(B) N HY(Y, B) AEN HI(Y) ELECON Hi(B) %

Vlastnost dimenzie: Ak P je jednobodovy priestor, tak

Z,ak q=0
HY(P) = { 1
0,ak g #0
Aditivnost: Nech (X, A) je par priestorov, nech { X, }ae4 je systém otvorenych podmnozin v X takych,

7ze |J X4 =X. Ozna¢me 4, = AN X,. Potom
a€EA

HY(X, A) = [[ H'(Xa, Aa)
acA

Excizia: Nech (X, A) je par priestorov a nech U C A je taka, ze U C A. Potom inklazia j : X — U, A —
U — (X, A) indukuje izomorfizmus H?(j) : H1(X,A) - HY(X — U, A —U) pre vSetky q € Z.
Vlastnost singuldrnych kohomoldgii, ktoré ich podstatne odliSuje od homolégii: v singuldrnych kohomo-
logickych grupéach sa dé zaviest poharovy sucin.

Def: Najskor definujme siéin korefazcov U : S™(X) x S™(X) — S™*t"(X).

Nech ¢ € S™(X), ¢ € S?(X). Definujme singularne komplexy:

Ay & Am d Am+n
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O[m(to,...,tn) = (to,...,tn,o,...,O)

571, : An — Aern

Bnto, - tn) =(0,...,0,tm, s tmtn)

Definujme koretazec cU ¢’ € S™t"

<cUd,p>=<c,poamy ><d,poBy>pre p € Sprm(X).

D4 sa ukazat 0y qn(cUd) = dn(c) U £ cUd,(c).

Z toho vyplyva, ze predpis ([c], [¢']) — [cUc] dobre definuje zobrazenie U : H™(X)x H"(X) — H™t"(X),
je to tzv. pohdrovy sitéin v graduovanej grupe (H°(X), H'(X),...) (tiez: kohomologicky st¢in).

Ljusternikova-Snirelmanova kategdria topologického priestoru
Def: Nech X # () je topologicky priestor a A jeho topologicky podpriestor. Hovorime, Ze topologicky
podpriestor A je kontraktibilny v X, ak existuje homotdpia v X medzi kongtantnym zobrazenim
c: A — X, ¢(x) = a pre lubovolné z € A (pre ddke a € X) a inkltziou i : A — X, t.j. vlastne ak
existuje homotodpia H : A x I — X
H(z,0)=c(z)=aVre A
H(z,1)=xzVre A
Def: Nech X je topologicky priestor. Potom najmensi pocet otvorenych kontraktibilnych v X podmnozin
X, ktoré pokryvajiu X, sa nazyva Ljusternikova-Snirelmanova kategdria topologického priestoru
X, cat(X).
Horné odhady:
Nech M je kompaktnd hladkéd varieta (bez okraja). Potom plati: cat(M) < pocet kritickych bodov
Tubovolnej hladkej redlnej funkcie na M.
Ak M je n-rozmernd varieta, tak cat(M) < n.
Dolné odhady:
Def: Kohomologickou dfzkou topologického priestoruX rozumieme najviicsie p také, 7e existuji
nenulové a;, € H*(X;Zy),... ,a;, € Hir (X;Zs),i) > 0 také, ze a;, Ua;, U---U a;, # 0, znacime ju
cup(X).
Tvrdenie: cat(X) > cup(X) + 1

Intuitivny pristup k H,(P), P je komp. plocha
Def: Kompaktna plocha = kompaktnd 2-rozmernd topologickd varieta. (t.j. haussdorfovsky so
spocitatelnou bazou, kde kazdy bod mé okolie homeomorfné s D?).
Def: Cyklus v R? je dvojvrcholovy graf s orientovanymi hranami taky, ze pocet hran vchadzajicich do
kazdého (z tych dvoch) vrcholov je rovnaky ako pocet vychadzajacich hran.
Def: Cyklus na kompaktnej ploche P = homeomorfny obraz cyklu v R?, pricom homeomorfizmus
zachovéva orientacie hran.

RozliSovanie spojitych zobrazeni S™ — S™ pomocou stupna zobrazenia
Def: Nech f: 8™ — S™ je spojité. Potom H,(f) : H,(S™) — H,(S™) je homomorfizmus grip, a teda
H,(f)(sn) = ks,. Cislo k € Z sa nazjva stupen zobrazenia f, k = deg(f).
Veta: l.deg(idx) =1
2.Ak f,g:S™ — S™ stt homotopné, tak deg(f) = deg(g).
3.f,g: 8™ — S™ st 2 zobrazenia, tak deg(g o f) = deg(g) deg(f)
4.f: 8™ — S™ je kon$tantné = deg(f) = 0.
Veta: Ak f:S™ — S™ je spojité zobrazenie také, Ze deg(f) # 0, potom f je surjektivne.
Def: a: S™ — S™ a(z) = —z je tzv. antipoddlne zobrazenie.
Tvrdenie: deg(a) = (—1)"*!
Def: Antipodalny bod zobrazenia f : S™ — S™ je g € S™ : f(xg) = —xo
Veta: Nech f:S™ — S™ je spojité zobrazenie.
a) Ak f nemd pevny bod, tak f je homotopné s antipoddlnym zobrazenim.
b) Ak f nem4 antipodélny bod, tak f je homotopné s idgn.
Veta: Ak f je homotopicka ekvivalencia, tak deg(f) € {-1,1}
Veta: Ak f : S™ — S” je spojité také, Ze |deg(f)| # 1, tak f ma aspoir 1 pevny bod a aspon 1
antipodalny bod.
Veta: Ak n > 2 je parne, tak kazdé spojité zobrazenie f : S™ — S™ ma pevny bod, alebo m4 antipodalny
bod.
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Def: Vektorové pole na sfére S™ mozeme chipat ako také zobrazenie s : S™ — R*! také, Ze <
z,s(z) >=0.
Veta: Na sfére parnej dimenzie neexistuje vektorové pole, ktoré by bolo v kazdom bode nenulové.

Suvislost existencie viade nenulového vekt. pola na S?**! s tokom na S2¢+!
Def: Tok vektorového pola v : S?#*1 — R2k+2 je spojité zobrazenie ® : R x S2F+1 — §2h+1 taKké, 7e
®0,2) ==
% = v(®(t,z)) pre vietky (¢, ).
Pre kazdé t € R je ®(t,-) = &; : S™ — S™ homeomorfizmus.

Otazky na skuske
Cesta v topologickom priestore. Vypocet fundamentéalnej grupy kruznice. (Dopliiujice otdzky: Musi byt
(X, z) komutativna? Ako savisi (X, z) s homolégiami?)
Vlastnosti homoldgii. Definicia H,(f). (Hqy(S™) =7, Ho(X) =7)
Homomorfizmy retazcovych komplexov. Brouwerova veta o pevnom bode.
Definovat faktorovy retazcovy komplex. Odvodte dlhii exaktnii homologickii postupnost pre pary priesto-
rov.

16



