Verzia: 22. februara 2004

Toto by mal byt prehlad viet, ktoré sa tykaju jednotlivych statnicovych otdzok z malého
bloku matematickd analyza. Niekde je toho uvedeného viac, nez treba, alebo viac nez sa
preberalo na prednaskach, inde zasa mozno nie¢o podstatné chyba. To, Ze sa tieto poznamky
lisia od toho, ¢o sme preberali na prednaskach suvisi s tym, Ze sa mi obcas zdalo rozumnejsie
opisovat to z knih, nez z prednésok. (Nie Ze by niektoré prednésky boli zlé, to len ja som si
nerobil poriadne pozndmky. :-)

Ak sa niekomu stane, Ze mu poskodi nespravna odpoved, ktort sa naudil z tohto textu,
vopred sa mu ospravedliujem. Dufam ale, Ze aspon niekomu tieto poznamky pomozu.

Poznamky sa momentalne nachddzaji na thales.doa.fmph.uniba.sk/sleziak/texty.
Su tam uverejnené aj zdrojaky - takze v pripade, Ze sa sylaby zmenia méte moznost si ich
upravit, nejaké casti vynechaf alebo naopak pridat. Ak by ste nasli v texte chyby, budem
rad, ked mi o nich date vedief na sleziak@fmph.uniba.sk a pri najblizsej aktualizdcii tam
uz bude opravené verzia.

1 Spojitost

Spojitost funkcie jednej a viacerych premennych, spojitost funkcie komplexnej premennej,
spojitost zobrazenia z R™ do R¥. Zdkladné vety o spojityjch funkcidch, Weierstrassove vety.

Spojitost funkcie

Nech (X, dy), (Y, ds2) st metrické priestory, AC X a f: A — Y je funkcia.

Definicia 1. Hovorime, ze f: X — Y je spojitd v bode xg € A, ak pre kazdé € > 0 existuje
d > 0 také, ze pre kazdé x € A také, ze dy(z,z0) < ¢ plati da(f(x), f(z0)) < e.

Tvrdenie 1. f je spojitd v bode x¢ prave vtedy, ked lim f(z) = f(xo).
Tr—xo

Na zéklade ekvivalencie Cauchyho a Heineho definicie limity funkcie potom dostaneme
nasledovné tvrdenie:

Tvrdenie 2. f je spojitd v bode xo prdve vtedy, ked pre kazdi postupnost taki, Ze x, — xg,
T f(2,) = f(o).

Podmienka z predchiadzajiceho tvrdenia sa niekedy tiez vold Heineho definicia spojitosti
a povodna definicia Cauchyho definicia spojitosti.

Tvrdenie 3. Ak f, g su spojité v bode xg, tak si v xg spojité aj c1 f + cag a fg. Ak navyse

g(zo) # 0, tak aj ggf; je spojitd v x.

Definicia 2. Hovorime, ze f: X — Y je spojitd na mnozine A (A C X), ak je spojita
v kazdom bode mnoziny A.

Ako Specialne pripady spojitosti zobrazeni metrickych priestorov dostaneme pojmy spo-
jitosti pre priestory zo zadania, t.j. napriklad X = R™, Y = R*, alebo X =Y = C.
Zakladné vety o spojitych funkciach

Spojité funkcie na kompaktnych mnozinach

Veta 1 (1.Weierstrassova veta). Ak A je kompakiny metricky (topologicky) priestor, tak
spojita funkcia f: A — R je na A ohranicend.



Veta 2 (2.Weierstrassova veta). Ak A je kompakiny metricky (topologicky) priestor, tak
spojita funkcia f: A — R nadobida na A svoje mazimum aj minimum.

Veta 3 (3. Weierstrassova, Cantorova). Spojitd funkcia na kompaktnom metrickom pries-
tore je rovnomerne spojitd.

Monoténne a spojité funkcie na intervale

Definicia 3. Podmnozina I C R sa nazyva interval, ak plati:
1. Existuju x1, zo také, ze x1 # x2 a 1,29 € 1.
2. Ak zi <t<agaxi,zo €1, takt el.

Nech I je interval.
Veta 4. Ak f: I — R je spojitd, tak f(I) je jednoprvkovd mnoZina alebo interval.

Tvrdenie 4. zo € I je bod nespojitosti neklesajicej funkcie f: I — R prdve vtedy, ked
lim f(z) < lim f(x).
T—To— T—To4
xo € I je bod mespojitosti nerasticej funkcie f: I — R prave vtedy, ked lim f(z) >

T—To_
lim f(x).
T—To4

Veta 5. Ak f: I — R je nerastica (neklesajica) funkcia a f(I) je interval alebo jednobodovd
mnoZzina, tak f je spojitd na I.

Veta 6. Ak f: I — R je rastica (klesajica) spojitd funkcia, tak aj f=1 je rastica (klesajica)
a spojita.

...ako také odporné hmyzovité mravce.

Kubacek

2 Diferencovatelnost

Diferencovatelnost funkcie jednej a viacerych premennych, diferencovatelnost zobrazenia z
R™ do R*. Diferencovatelnost a spojitost. Taylorov vzorec, extrémy funkcit.

2.1 Diferencovatelnost funkcie jednej premennej

Definicia 1. Nech f: O(a) C R — R je funkcia. Hovorime, Ze f mé v bode a derivdciu, ak

existuje lim {2=1@) —. p1(q).

Definicia 2. Majme a € O(a) C R, f: O(a) — R. Hovorime, Ze f je diferencovatelnd v

bode a, ak existuji A € R a w: O(a) — R také, ze lim w(z) = w(a) = 0 a plati f(x) =
r—a

fla) + A(z — a) + w(z)(z — a) pre vietky x € O(a). Linedrny vyraz A(z — a) =: df(z,a)

nazveme diferencidlom funkcie f v bode a.

Veta 1. f: O(a) — R je diferencovatelnd v a < existuje koneénd derivacia f'(a) € R.

Definicia 3. Funkcia f: M — R je diferencovatelnd na mnoZine M C R, ak je diferencova-
telnd v kazdom bode tejto mnoziny.

Definicia 4. Hovorime, ze funkcia f je n-krat diferencovatelnd v bode a, ak ma v bode a
n-ta derivaciu.



Zakladné vety diferencialneho poctu

Veta 2 (Darbouxova). Ak f: (a,b) — R je spojitd na {(a,b) a md tam deriviciu (v a
sprava, v b zlava), tak f' nadobida vietky hodnoty medzi f' (a) a f’ (D).

Veta 3 (Rolleova). Nech f: (a,b) — R

1. je spojitd v (a,b),

2. md derivdciu (konecni alebo nekonecni) v (a,b),
3. f(a) = 1(0).

Potom ezistuje ¢ € (a,b) tak, Ze f'(c) = 0.

Veta 4 (Lagrangeova). Nech f: (a,b) — R

1. je spojitd v (a,b),

2. md derivdciu (konecnd alebo nekonecni) v (a,b).
Potom exzistuje c € (a,b) tak, Ze f'(c) = W'

Veta 5 (Cauchyho - vo vSeobecnejSej formulécii). Nech f,g: (a,b) — R
1. su spojité v {a,b),

2. maji derivdciu (koneéni alebo nekoneéni) v (a,b).

Potom ezistuje bod c € (a,b) taky, Ze (f(b) — f(a))g'(c) = (g(b) — g(a)) f'(c).

Veta 6 (Cauchyho). Nech f,g: (a,b) = R
1. st spojité v {a,b),
2. maji derivdciu (koneéni alebo nekoneéni) v (a,b), (tu vSak musime poZadovat, aby v
pripade, Ze obe funkcie maju v tom istom bode nekonecni derivaciu bol ,sucin® tychto neko-
necien opacného znamienka ako zlomok vystupujici vo vete)
3. f%(z) + g"*(x) > 0 pre véetky x € (a,b),
4 9(b) # g(a).
() _ f(b)—f(a)

Potom ezistuje ¢ € (a,b) tak, Ze i CRRIOETIOR

Veta 7 (L’Hospitalove pravidlo). Nech a € RT, f,g: O(a) — R st spojité a
1. lim f(x) = lim g(z) =0 (o0),

2. pre z € O(a), x # a existuji f'(x), ¢'(z) a ¢'(x) # 0,

3. existuje lim %.
P 1) o f@) s f(=)

Potom existuje ;E)r}l 9(z) @ plati ilg}l o) = ;lllg (@)

L’Hospitalove pravidlo mozno pouzif aj viacnasobne. Mozno ho pouzit tiez na vypocet
limit typu 0.00 (f.g = f/(1/9)), 0o — 00 (f —g = (1/9—1/f)/(1/(f.9))) a 0 (f¢ = o™/
a g.ln f je typu 0.00).

2.2 Diferencovatelnost funkcii viac premennych

Definicia 5. Majme dant otvorenti mnozinu M C R" f: M - R, a = (ay,...,a,) € MNM'.
f méavbode avsmere v € R" Gdteauzov diferencidl, ak existuje %iH(l) w =: Df(a,v).
Ak je Gateauxov diferencidl v bode a linearny (ako funkcia smeru v), tak ho nazyvame
derivdciou funkcie f v bode a a v smere v a funkcia sa nazva G-diferencovatelnd v a.

Definicia 6. Hovorime, Ze [ je Fréchetovsky diferencovatelnd v a, ak existuje linedrne zobra-

zenie [,: R" — R také, Ze lim |f(z)7f58;l)“(x7a)l = 0. Oznacujeme Il ,(z — a) =: df (a,x — a).




Veta 8. Nech f: M CR"” - R, ae€ MNM', nech f je F-diferencovatelnd v a. Potom

]
89{1‘ (a)ni;

(i) ezxistuje G-derivdcia f v bode a a plati Df(a,m) =

o8

=1

(ii) f je spojita v bode a.

Veta 9 (Lagrangeova veta o strednej hodnote). Nech a € O(a) C R™, f: O(a) — R,

x = (1,...,2,) € O(a), f md parcidlne derivdcie %: O(a) — R. Potom existuji t; € (0,1)
také, Ze pre vsetky x € O(a) f(x) — f(a) = > gj, (ci)(zi — a;), kde ¢; = (a1,...,a;-1,a; +
i=1 "

ti(x; — a;), xiy1,...,2n) € Ofa).

Désledok 1. Aka € R™, O(a) CR™, f: O(a) = R, f € CY(O(a)), tak f je F-diferencova-
telng v a.

Toto je tu pre pripad, Ze by niekto chcel rypat a bol zvedavy, ¢i niektora z uvedenych viet
neplati obratene:

2

flxy,me) = lﬁsz mé G-diferencidl ale nie G-derivéciu v (0,0), nie je spojitd v (0,0), na
1 2

kazdej priamke prechadzajicej cez 0 je spojita

f(z1,29) = \/]z122] M4 parcidlne derivacie v R?, nie je F-diferencovatelné v (0,0), ma deri-

vécie vo vSetkych smeroch, nie je G-diferencovatelnd.

f(x1,29) = (22 + 23) sin ﬁ je F-diferencovatelnd v (0,0) ale nemé spojité parcialne deri-

vacie
f(l'l, $2) =

telna. (asponi podla miia)

je G-diferencovatelnd v (0,0) ale nie F-diferencova-

(a3 +43)2 pre a0
0 pre x2 =0

2

0 pre x? ; . .
flz,y) = { pre y 7 je spojitd a G-diferencovatelna v 0, ale nie je tam F-diferencova-
rprey=ux

telna.
Diferencialy a derivacie vys8ich radov
Definicia 7. f je G-diferencovatelnd v bode a v smere ny,...,ng, ak f(-,ny,...,ng_1) je

G-diferencovatelnd v a v smere ny.

Nech f: A — R je (k — 1)-krat F-diferencovatelnd v kazdom bode € O(a) N A a

d* =1 f(z;ny,...,np_1) je jej (k — 1)-vy diferencidl v & € O(a) N A v smere n4,...,n;. Ho-
vorime, 7e f je k-krat F-diferencovatelnd v a, ak d*~'f(:;ny,...,nx_1): O(a) N A — R je
F-diferencovatelnd v a pre kazdé nq,...,n;_1.

D f(a;uq,...,ux) = DID* 1 f(- ug, ... up_1)](a, up)
d¥fasur,. .. up) =d[d*f(ur, . uee1)](a, ug)

lim df (z,v) — df (a,v) — d*f(a;v;x — a)

=0
z—a d(z,a)

Veta 10 (O zamennosti G-diferencovania). Nech O(a) C R", a € R", u,v € R"
(smery), f: O(a) — R. Nech



(i) existuji Df(-,u): O(a) > R, Df(-,v): O(a) > R a
(ii) D?f(;;u,v): O(a) — R, D?f(-;v,u): O(a) — R ezistujii a si spojité v bode a.
Potom D?f(a;u,v) = D?f(a;v,u).

2.3 Diferencovatelhost funkcie z R” do R"

TODO Definicia
Veta o implicitnej funkcii je tu v zneni z [D] aj z [BR], takZe si mozete vybrat.

Veta 11 (o implicitnej funkcii). Nech 29 € R™, yo € R*, O(z0), O(yo) st ich okolia.
Nech prei = 1,...,k zobrazenia F;: O(xg) x O(yo) — R splriaji nasledovné podmienky:

(i) si spojité v bode (xo,yo);
(ii) Fi(xo,y0) = 0;

(i4) magi spojité parcidlne derivdcie 25

8y,~

prei,j=1,...,k v bode (xo,y0);
L . D(Fy,..F
(iv) jakobidn ﬁ(mo,yo) #0
Potom existuji ¢isla § > 0, ¢ > 0 tak, Ze
(i) pre kazdé x € K(x,0) C O(xg) existuje prdave jedno f(x) € K(yo,e) C O(yo), pricom
Fi(z, f(z)) = 0; (K oznaduje viacrozmerni kocku)

(i) f(xo) = yo;
(#ii) zobrazenie f: K(x9,0) — K(yo,€) je spojité v bode x.

Ak naviac predpokladdme, Ze v okoli O(xg) x O(yo) existuji a su spojité vsetky parcidlne

derivacie 25?, gfi, tak existuju a su spojité vsetky parcidlne derivdcie gf na K(xg,0).
S Omg >

(fi su zlozky f.) Hodnoty tychto derivdcii dostaneme ako rieSenie sustavy (ktorid ziskame

formdlnym derivovanim a ktord sa mi nechce opisovat).

Veta 12. Nech X, Y, Z su Banachove priestory, U C X,V CY su otvorené, F: UXV — Z
je C", 0 < r < o0, (z0,%0) € U XV, F(zo,yo) = 0. Predpokladajme, Ze D, F(xq,yo) md
spojity inverzny operdtor. Potom existuje okolie Uy x Vi C U x V bodu (x9,y0) a funkcia
f e Cr(Uy, V1) taka, Ze f(xo) = yo a Ze F(x,y) = 0 pre (x,y) € Uy x V1 plati prdave vtedy,
ak y = f(z). Dalej plati

Df(wo) = —[DyF(w0,y0)] " DuF (0, y0).

2.4 Taylorov vzorec

V jednorozmere:

Veta 13.
f/ a f// a
£a) = fla) + L2 (@ - 0y LN
Nech f,g: O(a) — R, f je n-krdt diferencovatelnd v O(a) a v kaZdom bode x € O(a) md
(n+1)-vd derivdciu. Nech g je v O(a) spojitd a md pre x € O(a), x # a derivdciu ¢'(z) # 0.
Potom ezistuje 6 € (0,1) také, Ze pre x € O(a) plati

(x—a)?+...+

) (g

_@—a"1-0)" g(x)—g(a@)
Bn(z) = n! g'(a+0(x— a))f( e+ - a)




Lagrangeov tvar zvysku (g(t) = (t — a)"™1):

Cauchyho tvar zvysku (g(t) = ¢):

(1-o"

R, =
n!

(¢ —a)" 1 D (@ + 0z — a))

Veta 14. Nech funkcia f md v bode a koneéni derivdciu n-tého rddu a nech Q,(x) je
polynom stupria mensieho alebo rovného n, pricom Q,(x) # T,(x), kde T, (x) je Taylorov
polynom f v bode a. Potom ezistuje okolie O(a) bodu a také, Ze pre vsetky x € O(a), x # a

Téato veta hovori, ze T,,(z) je lokdlne najlepsia aproximdcia f v okoli a pomocou polynému
n-tého stupina.
Vo viacrozmere: (predpokladdme, ze f je (k 4 1)-krat F-diferencovatelnd)

Ti(f,0) = F(a) + df(a;x — ) + i flase —a) + ...+ 1 flaz — )

1
(k+1)!

f(@) =Tk(f,a)(z) + d**f(a+60(x —a),z — a)

V*? Preco nestaci G-diferencovatelnost.
2.5 Extrémy funkcii
Extrémy funkcii jednej premennej

Veta 15. Nech xg je bod lokdlneho extrému funkcie f: I — R. Potom bud f'(x) neexistuje,
alebo f'(xg) = 0.

Veta 16. Nech f: I — R a vo vnitornom bode xg € I plati f'(x9) =0, f"(xo) # 0. Potom f
ma v bode xg lokdlny extrém, ak f"(xo) < 0 tak je to ostré lokdlne mazimum, ak f"(x¢) >0
tak je to ostré lokdlne minimum.

Veta 17. Nech f: I — R vyhovuje vo vniutornom bodu xy € I podmienkam:
(i) f'(xo) = f"(z0) = ... = f" D(wo) =0,
(i) ) (o) # 0.

Potom pri pdrnom n md f lokdlny extrém v xo (mazimum, ak f(z9) < 0 a minimum, ak
f(20) > 0) a pri nepdrnom n funkcia f nemd v bode xq lokdlny extrém.

Lokalne extrémy funkcie viac premennych

Veta 18 (Eulerova nutna podmienka lokalneho extrému). Nech M C R™ a plati:
(i) f: M — R md v bode a € M lokdlny extrém, a € Int M

(i1) existuje D f(a,u) v smere u € R™.



Potom D f(a,u) = 0.

Veta 19 (Lagrangeova postacujica podmienka lokalneho extrému). Nech O(a) C
R™ a plati

(i) a € R™ je staciondrny bod f: O(a) — R, ¢.j. % =0prei=1,....,m,

(ii) f je 2-krdt F-diferencovatelnd v a a zobrazenie x — d? f(z,v) je spojité v a a definované
v O(a) pre vetky v € R™.

Potom: Ak d*f(a,v) > 0 Vv € R™ \ {0} (2.diferencidl je kladne definitny), tak f md v a
lokdlne minimum. Ak d*f(a,v) < 0 Vo € R™ \ {0} (2.diferencidl je zdporne definitny), tak
f md v a lokdlne maximum. Ak ezistuji v1,v2 € R™ \ {0} tak Ze d*f(a,v1).d*f(a,v2) < 0
(2.diferencidl je indefinitng), tak a nie je bod lokdlneho extrému.

Viazané extrémy funkcie viac premennych

Veta 20 (Lagrangeove multiplikatory). Nech je dang bod xy = (xo1,...,Zon) € R",
Yo = Wous-- -, yok) € R, O(z9) C R™, O(yo) C R* a f: O(x0) x O(yo) — R. Nech si dané
vizby gi(z,y) =0, gi: O(zo) X O(yo) — R a plati:

(i) f, g; aj vsetky ich parcidlne derivacie 1.radu v O(zo) X O(yo) su spojité (f,g; €
CH(O(z0) x O(yo))-

(ii) %(%790) #0
(iii) f md v bode (xo,yo) lokdlny extrém vzhladom na vizbu M = {(z,y) € O(zg) X
O(yo); gi(x,y) =0prei=1,...,k}.

Potom existuji redlne ¢isla \; € R, i = 1,... k urdené jednoznacne také, Ze bod (x9,yo) je
staciondrny bod Lagrangeovej funkcie L = f 4+ Ag1 + ... + Apgr: O(zo) X O(yo) — R.

TODO ? ZovSeobecnenia z NADT a varia¢nych metéd ?

A teraz ideme t1i vetu pochopitelne dokézat.
Vencko

3 Komplexna analyza
Derivdcia komplexnej funkcie, Cauchy-Riemannove rovnosti. Cauchyho integrdlny vzorec,
rozvoj analytickej funkcie do Taylorovho radu. Laurentov rad, klasifikdcia izolovangch sin-

guldrnych bodov.

3.1 Topoldégia komplexnej roviny

Na mnozine C méme metriku p(z1,22) = |21 — 22| = /(21 — 22)? + (y1 — ¥2)2, t.j. C
R?, je to separabilny lokdlne kompaktny priestor.

Na mnozinu C = C U {oo} mozeme preniest metriku z gule pomocou stereografickej
projekcie.



Ziskame tak separabilny kompaktny metricky priestor, niekedy sa nazyva uzavreta rovina.
Na C st obe metriky ekvivalentné.
Prstencové okolie: p.(2) ={£ €C: | —z| < ¢}
pe(c0) ={€ € C: [¢] > £}

3.2 Derivacia funkcie komplexnej premennej, Cauchy-Riemannove rovnosti

Definicia 1. Nech f je definovand v okoli bodu zg € D. Derivdciou funkcie f v bode z

sa nazyva limita f’(zg) := lim f&=FG0) — iy A—JZC, ak tato limita existuje. f sa nazyva
zZ—2Zz0

Z—%0 Az—0 A
diferencovatelng v zp, ak existuje kone¢na derivacia f’(z).

Tvrdenie 1.
(f +9)(20) = f'(20) + ¢'(20)

(Cf)/(zo) = Cf/(zo)
(f9)'(20) = f'(20)9(20) + f(20)g'(20)

f ' _ f'(20)9(20) — f(20)g'(20)
;) o= (o)

Tvrdenie 2. F(z) = o(f(2)) = F'(20) = ¢'(f(20)) f'(20).

Veta 1 (Cauchy-Riemannove vzorce). Nech f je kompleznd funkcia, u a v si jej redina

a imagindrna cast (f = u+iv). Potom f je diferencovatelnd v zo prave vtedy, ked jej redlna

a imagindrna cast su diferencovatelné v 2o = (20,Y0) @ Uy = Vyl(zo,y0)s Uy = —Vil(zo,y0)-
Vitedy plati f'(20) = ui, (%0, yo) + v, (%0, yo) = vy (T0, yo) — iuy, (o, Yo)-

C-R vzorce v polarnych stradniciach: Oznaéme U(r,p) = u(rcosp,rsing),V(r,p) =
v(rcos p,7sin p). Potom rU; =V arV, = -U,.

Definicia 2. f sa nazyva reguldrna (holomorfnd) v z, ak je diferencovatelnd v nejakom
okoli bodu zg.

f sa nazyva reguldrna (holomorfnd) v oblasti D, ak je holomorfnéd v kazdom bode tejto
oblasti.

Ak u, v st redlna a imaginarna ¢ast regularnej funkcie f (v bode z/v oblasti D), nazyvame
. . v / . . . ’ _ 1 1! _ 1 1 _ wev .
ich harmonicky zdruZengmi funkciami. Plati Au = g, + uy, = vy, — vy, = 0, ¢ize u je
s L s e s Lo ’ ) ) .
harmonicki. Podobne sa da ukdzat, Ze v je harmonickd funkcia. Ak mame dané u, v sa da
urcit az na konstantu z CR, vzorcov.

3.3 Cesty a krivky

Definicia 3. Cesta je lubovolné spojité zobrazenie v: (a,b) — C, v(0) je zaciatok cesty, (1)
je koniec cesty. Cesta je uzavretd , ak v(0) = v(1).



Definicia 4. Cesty v;: (a1,81) — C a ¥: (ao,82) — C st ekvivalentné (11 ~ 72), ak
existuje spojita rastica funkcia 7: (o, 81) — (ag, Ba) taka, ze 11 (t) = y2(7(t)).

Krivka je trieda ekvivalencie ciest vzhladom na tito relciu.

Jordanova krivka - taka, Ze v je jednozna¢né (prosté).

Uzavretd Jordanova krivka - 7y je prosté s vynimkou krajnych bodov.

Cesta v je spojite diferencovatelnd cesta, ak pre kazdé t € (o, 5) existuje v/(t) = z'(t) +
1y’ (t). Spojite diferencovatelné cesta sa nazyva hladkd, ak pre kazdé ¢ je v'(¢t) # 0.

Po castiach hladkd - spojitd na {(a, 3) a interval («, 5) sa dé rozdelif na koneény pocet
intervalov tak, Ze na kazdom z nich je cesta hladka.

3.4 Integral funkcie komplexnej premennej

Definicia 5. Ak v je po castiach hladka cesta a f oy je spojitd, tak definujeme

7de « 7 (f o y(8)Y (t)dt

Mohli by sme definovat [ pomocou ¢iastoénych stc¢tov pre Iubovolné (rektifikovatelné ')
krivky, z tejto definicie sa da pre hladké cesty odvodit uvedeny vztah.

Tvrdenie 3. Ak f =u+iv, tak [ fdz = [(udz — vdy) + i [(udy + vdz).
2 2 v

3.5 Cauchyho integralny vzorec

Veta 2 (Cauchyho integralna veta). Ak f je holomorfnd v oblasti D a 7o, y1 st homo-
topické cesty v D, potom [ fdz= [ fd=.
Yo 71

Désledok 1. f € H(D) = [ fdz =0 pre kaZdi krivku v homotopickd 0 v D.
8!

Definicia 6. Oblast D sa nazyva jednoducho stvisl, ak 9D je stvisla.

Dosledok 2. Ak f € H(D) a D je jednoducho sivisld oblast, tak ¢ fdz = 0.
v

Veta 3 (Cauchyho integralny vzorec). Nech f € H(D) (f je holomorfnd v oblasti D)
a G C D, 0G pozostdva z konecného poctu spojitych kriviek a je orientovand kladne. Potom
pre kaZdé zg € G plati

_% f—ZO
oG

3.6 Taylorov rad

Veta 4 (Taylorova). Ak f € H(D), zo € D, tak vU = {z : |z — 29| < R} C D plati
f(z) =3 cn(z — 20)™, kde ¢, = % f = Zo)ﬂﬂd{, v ={lz — 20l = p}, p < R.

n=0

Veta 5 (Cauchyho nerovnosti). Nech f € H(D), U ={z: |z — 2| <r} C D, v, = 9U.
Nech f je na vy, ohranidend, |f| < M. Potom |c,| < T—Af{

IRektifikovatelna krivka je krivka, ktora mé koneént dizku.



Veta 6 (Liouville). Ak f je holomorfnd v C a je tam ohraniéend, f je konstantnd.

Veta 7. Ak f € H(D), tak md v D derivdcie vsetkych rddov a f™ € H(D).

Veta 8. C, = ()

n!
Dosledok 3. f(")(z0) = 3% | w25 & ge

2mi E—2zg)nt1

o0

Veta 9 (o holomorfnosti stctu). f(z) = > c,.(z — a)™ je holomorfnd v kruhu konver-
n=0

gencie.

Veta 10. Nasledujice podmienky su ekvivalentné:
(i) f je holomorfnd v zo. (V*? Nemalo by tu byt, Ze v nejakom okoli zo?)
(it) f € Cu(sp), [ fdz=0 pre kaZdy trojuholnik taky, e A C U.
[7AN

(#ii) f sa dd rozloZit v nejakom okoli zg do Taylorovho radu.
Definicia 7. Nulovgm bodom funkcie f nazyvame a € C, f(a) = 0.

Veta 11. Ak a je nulovy bod funkcie f, f € H(D), f £ 0 v Ziadnom okoli bodu a, tak
existuje n € N také, Ze f(z) = (z — a)"p(z), ¢ € H{U) a ¢ # 0 v nejakom okoli bodu a (t.j.
existuje také okolie V bodu a, Ze o(z) # 0 pre Vy € V).

Veta 12 (o jednoznaénosti). Nech D je suvisld oblast a fi1, fo € H(D), f1(z) = fa(z) pre
vSetky z € EC D a E md v D hromadny bod. Potom f1 = fo pre vsetky z € D.

Definicia 8. Rddom nulového bodu funkcie f nazyvame rad najnizsej derivéicie f, ktorej
hodnota v bode a je nenulova.

Veta 13. Rdd nulového bodu a funkcie f je maximdlne n také, Ze (Zf_(z))n je po dodefinovani

v a holomorfnou funkciou.

3.7 Laurentove rady, klasifikacia izolovanych singularnych bodov

Veta 14. Nech f € H(V), kde V = {z € C : r < |z — a| < R} je medzikruZie. Potom

f(z) = i en(z —a)", ¢ = 5 J &%df pre n € Z, kde «y je kruznica so stredom a a

n—=—oo

polomerom p, r < p < R.

Veta 15 (o jednoznaénosti rozvoja do Laurentovho radu). Ak f moZno rozvinit do

Laurentovho radu, tak c, = 2m f @ fz(f))nﬂ

Veta 16 (Cauchyho nerovnosti). |c¢,| < pMn, ak f(§) < M na ,.

o]
> en(z —a)™ ...reguldrna ¢ast Laurentovho radu
n=0
-1
> en(z—a)™ ...hlavné ¢ast Laurentovho radu
n=—oo
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Definicia 9. a € C sa nazyva izolovany singuldrny bod funkcie f, ak f v bode a nie je
reguldrna a existuje prstencové okolie bodu a, v ktorom je holomorfna (reguldrna).
Izolovany singularny bod sa nazyva odstrdnitelng, ak existuje lim f(z) € C.
z—a

Izolovany singuldrny bod sa nazyva pdl, ak lim f(z) = oo.
ZzZ—a

Izolovany singuldrny bod sa nazyva podstatny inak (teda ak nie je odstranitelny ani pdl).

Veta 17. Izolovany singuldrny bod a € C funkcie f je odstranitelny < Laurentov rozvoj f v
P(a) neobsahuje hlavni éast < |f| < M € R v nejakom P(a).

Veta 18. Izolovany singuldrny bod a € C funkcie f je pdl < Laurentov rozvoj f v P(a)

obsahuge (nenulovy) koneény pocet nenulovjch élenov v hlavnej éasti, t.5. f(z) = >, cn(z—
n=—N

a)", N € N.

Veta 19. Bod a je polom funkcie f < ¢ = %, © #Z 0 je holomorfnd v nejakom okoli a a a
je nulovy bod .

Definicia 10. Néasobnost pélu = nésobnost a ako nulového bodu ¢.

Veta 20 (Sochockij-Weierstrass). Ak a je podstatny singuldrny bod, tak pre VA € C
existuje (zn)nen takd, Ze z, — a a lim f(z,) = A.
n—oo

Definicia 11. Nech a € C, f € H(P(a)). Reziduom funkcie f v bode a nazyvame res =
7 [ fdz, v C P(a).

Tr

Veta 21 (Cauchyho veta o reziduach). Nech f € H(D) okrem izolovanej mnoZiny singu-

larnych bodov, G C D, OG neprechddza singuldrnymi bodmi f. Potom [ fdz=2mi Y res
oG a;€G %
(stcet cez vsetky singuldrne body a; leZiace v G).

Veta 22. res f =C_;

Dosledok 4. Ak a je odstrdnitelny singuldrny bod funkcie f, tak res f = 0.

Désledok 5. Ak a je jednoduchy pdl, tak lim(z —a)f(z) = C_;.

1 n—1

Ak a je pdl ndsobnosti n, tak C_1 = —— lim L — [(z — a)" f(2)].

(n=1)! ;55, dzn—1
Definicia 12. )
res f = — /fdz
00 2mi
¥r
resf=—-C_;

k
Veta 23. Ak f je holomorfnd v C okrem konecného poctu singuldrnych bodov, tak " res f +
i=1 @i
res f = 0.

Veta 24 (princip maxima modulu). Ak f(z) # C, f € H(D) (D je oblast), tak |f(z)]
nenadobida vo vnitri D mazimum.

Definicia 13. Hovorime, ze funkcia f je meromorfnd v oblasti D, ak nemé v D iné singuldrne
body ako pdly a odstranitelné singularne body.
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Veta 25 (princip argumentu). Nech f je meromorfnd v D, G je oblast’ G c D, 0G

neprechddza nulovgmi bodmi ani polmi funkcie f. Potom N — P = f f(z) dz kde N je

2H1
pocet nulovych bodov a P je pocet polov funkcie f v oblasti G, pricom nulove body aj poly
pocitame vrdtane ndsobnosti.

No, je to ocividné, Ze?
Valések

4 Postupnosti a rady funkcii

Postupnosti a rady funkcii. Bodovd a rovnomernd konvergencia, mocninové rady, polomer
resp. kruh konvergencie, derivovanie a integrovanie funkciondlnych postupnosti a radov. Tay-
lorov rad. Fourierov trigonometricky rad, postacujice podmienky pre bodovi a rovnomernt
konvergenciu.

4.1 Kritéria konvergencie pre Ciselné rady
Mozno nezaskodi zopakovaf si aj kritérid konvergencie pre ¢iselné rady:

o0 o0
Veta 1 (1. porovnavacie kritérium). Majme rady > an,, Y. b,. Nech pre skoro vsetky
n=1 n=1
o0 oo
n € N0 < a, <b,. Potom ak konverguje rad >_ by, tak konverguje aj rad > ay.
n=1 n=1

o0 (o]
Veta 2 (2. porovnavacie kritérium). Majme rady Z an, Z bp, Qn,bn > 0. Nech pre
=1

skoro vsetky n € N a““ < "*1 . Potom ak konverguje rad Z b,, tak konverguje aj rad

n=1
Z -

n=1

o0
> n—lp diverguje pre 0 < p < 1.

n=1

Veta 3 (Cauchy). Majme rad Z ap, an > 0, oznaéme a = lim {/a,. Potom

n—oo
(i) ak o < 1, rad konverguje,
(1) ak o > 1, rad diverguje,

(i4i) existuji konvergeniné aj divergentné rady, pre ktoré o = 1.

Veta 4 (D’Alembert). Majme rad > an, a, > 0.

n=1

(i) Ak limsup “==* < 1, tak rad konverguge.

n—oo
(i) Ak pre skoro vSetky n € N % > 1, tak rad diverguje.

(#ii) Existuji konvergentné aj divergentné rady, pre ktoré lim inf “"“ <1 < limsup a"“ .

Veta 5 (Raabe). Majme rad > a,, a, > 0.
n=1

12



{ ezistuje v > ake, Ze pre skoro vsetky n € N plati n | = — > r, tak ra
i) Ak existug 1 take, Z k Setky N platt “ 1) > r, tak rad

An 41
konverguje.

(i) Ak limsupn (#11 - 1) < 1, tak rad diverguje.

n—oo

Veta 6 (integralne kritérium). Nech f: (1,00) — R je nezdpornd, spojitd, nerastica a
F(z) je k nej primitivna funkcia na (1,00). Nech f(n) = a,. Ak lim F(x) je koneénd, tak
n—oo

o0
rad > a, konverguje, ak je rovnd +oo, tak tento rad diverguje.
n=1

4.2 Bodova a rovnomerna konvergencia

Nech X a Y st metrické priestory a f: M C X — Y je zobrazenie.

Definicia 1. Hovorime, Ze postupnost (f,(z))nen (bodovo) konverguje na M k funkcii f, ak
Ve € M Ve > 03ng € NVn > ng d(fn(x), f(z)) < &, oznacujeme lim f,(z) = f(z),z € M,
n—oo

alebo f,,(z) % f(x).

Definicia 2. Hovorime, Ze postupnost (f,(x))nen rovnomerne konverguje na M k funkeii
f,ak ¥e > 03ng € NV¥n > ng Vo € M d(fn(z), f(x)) < &, oznacujeme lim f,(z) = f(z)

M
rovnomerne vzhladom k M, alebo f,(z) = f(x).

Rovnomernii a bodovt konvergenciu funkciondlnych radov definujeme ako konvergenciu
postupnosti ¢iastocénych sictov prislusného typu. (Okrem Diniho vety a suprémového kritéria
st tu vSetky ostatné vety uvedené pre R.)

Veta 7 (suprémové kritérium).

fn(2) g f(z) & lim M, = lim sup d(f,(z), f(z)) =0

n—oo n—oo .’IJEJVI

Veta 8 (Cauchy-Bolzanov princip).
M
(i) fu(z) = f(z) © Ve >03ng € NVp,q > ng | fp(z) — fy(z)| < e

0 M
(1) > up =< Ve>03Ing € NVn > ngVm € N |upp1(2) + tpia() + .o o 4 tUnpm(2)] < €

n=1
Veta 9 (Weierstrass). Ak |u,(2)] < A, a > A, —, tak > u,(z) =.

Veta 10 (Diniho). Nech ()52, je monotdnna postupnost spojitych funkcii f,: M — R,
kde M je kompaktnd podmmnoZina metrického priestoru X a f, bodovo konverguje k spojitej
funkcii f. Potom f, konverguje rovnomerne k f.

Lema 1 (Abelova lema, Abelova parcidlna sumaécia). Nech a1,as,...,an,b1,ba,...,b,
eER, a3 <ax<...<a, (a1 >a2>...>ap)aneh|by+...+b|<Bprei=1,...,n.

Potom | Y a;b;| < B (Ja1| + 2|an])

i=1

Veta 11 (Dirichlet). Majme > a,(x)b,(x), x € M. Nech
n=1

13



(i) Yx € M postupnost {a,(z)} je neklesajica (nerastica) a a,(x) =,
(i) 3B > 0Vx € M Vn € N |B,(z)| < B, pricom B,(z) = |bi(x) + ... + by(z)| (tzv.

rovnomernd ohranicenost).

&)
Potom > an(z)b,(z) =.
n=1 M

Veta 12 (Abel). Majme > an(x)b,(z), x € M. Nech
n=1

(i) Yx € M postupnost {a,(x)} je neklesajica (nerastica) a 3A > OVx € M Vn €
Nlan(2)| < A,

oo M
(i1) szlbn(x) =.
00 M
Potom 2::1 an(z)by () =.

Veta 13. Majme postupnost (fn(x))2,, © € M, nech a € R* je hromadny bod M. Nech
M

existuje koneénd lim f,(x) =: A, pre n € N a nech f,(z) =. Potom existuje konecnd limita

lim A, =: A a plati lim f(z) = A (t.j. lim lim f,(z) = lim lim f,(z)).

n—oo r—a r—a n—0o0 n—oo r—a

Veta 14. Majme postupnost (fn(x))22,, x € I, kde I je interval, nech f,(x) si spojité na
I
I preneN a f,(x) = f(z). Potom f(x) je na I spojitd.

Dosledok 1. Majme rad >, un(xz), © € I, I je interval, nech u,(x) si na I spojité pre
n=1
o0 I
n € N a nech > un,(x) = s(x). Potom s(z) je spojitd na I.
n=1

Veta 15. Majme postupnost (fn(x))o2,, © € (a,b). Nech pre lubovolné n € N je f,(z) €
<a’b)
R({a,b)) (fn je riemannovsky integrovatelnd na (a,b)) a nech fn(x) = f(x). Potom f(x) €
b b b
R({(a,b)) a plati [ f(z)dz = [ lim f,(z)dz = lim [ f,(z)dz

Désledok 2. Plati to aj pre rady.
Veta 16. Majme postupnost (fn(z))22,, = € {(a,b). Nech
(i) existuje xo € (a,b) také, Ze ciselnd postupnost (fn(x0))o, konverguje,

(a,b)
(i1) pre vietky n € N je f, () diferencovatelné na {(a,b) a f(x) = .

(a,b)
Potom fn(x) = f(x), pricom f(x) je diferencovatelnd na {(a,b) a plati f'(x) = lim f](z).

n—oo

Daésledok 3. Pre rady.
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4.3 Mocninové rady

Definicia 3. Mocninovgm (potencénym) radom so stredom v bode a € R nazyvame rad
o0

> an(z —a)", a, € R st koeficienty potenéného radu.
n=0

o0
Veta 17. Majme rad > a,(x — a)™.
n=0
(i) Nech existuje xo # 0, v ktorom tento rad konverguje. Potom absolitne konverguje pre
€ (=|zol, [xol)-

(i) Nech existuje x1 € R, v ktorom tento rad diverguje alebo relativne konverguje. Potom
diverguge pre vietky x € (—oo, —|z1]) U (Jz1], 00).

o0
Veta 18. Majme rad > a,(x — a)™, nech existuje xg # 0, v ktorom tento rad konverguje.
n=0
Potom existuje jediné R také, e 0 < R < oo a pre x € (—R, R) dany rad konverguje a (v
pripade R < 00) pre x € (—oo, —R) U (R, 00) diverguge.

Definicia 4. Bod R, o existencii a jednoznac¢nosti ktorého hovori predchddzajica veta, sa
o0
nazyva polomer konvergencie radu Y. a,(z — a)™ a interval (—R, R) sa nazyva interval

n=0

konvergencie.

Veta 19 (Cauchy-Hadamard). Majme rad > an(z — a)”, oznaéme X = limsup ¥/|ay].

n=0 n— 00

Potom

(i) ak 0 < X < oo, tak R= %,

(ii) ak A =0, tak R = oo,
(iti) ak A\ = oo, tak R = 0.
Veta 20. Nech 0 < R < 0o je polomer konvergencie radu Y an(z —a)", oznacme f(z) :=

n=0

> ap(x —a)” pre x € (—R, R). Potom
n=0

(i) pre kazdé {(a,b) C (—R, R) rad na {(a,b) rovnomerne konverguje,

(ii) f je na (—R, R) spojitd,
(iii) f je na (=R, R) diferencovatelnd a plati f'(z) = > na,z"1,
n=1

$n+1

(i) pre kazdé x € (—R,R) f € R({0,z) a platz’off(t)dt = Zoanm.

(o)
Veta 21 (Leja). Nech rad ) an(z — a)™ md polomer konvergencie R, 0 < R < oo, nech v
n=0

bode R (resp. —R) konvergujg. Potom rovnomerne konverguje na (0, R) (resp. (—R,0)).
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Definicia 5. Nech f: O(a) — R (a € R) je v bode a nekonecne diferencovatelnd (teda
existuje kone¢na derivicia v bode a Tubovolného radu). Taylorovym radom nazyvame rad

> 4(n)(q
Sy )
n=0

n:

Veta 22. > w(x —a)" = f(x),x €I < lim R,(f,z,a)=0.

n—=0 n— 00

[ee]
Veta 23. Majme mocninovy rad > an(x —a)™ =: f(x), z € 1. Potom tento rad je Taylo-

n=0
(n)
rovgm radom [ v bode a (a, = fn—,(a))

Veta 24. Ak f: I — R je rozvinutelnd do potencéného radu, tak jej rozvoj je jednoznacny.

. z? "
et =14+t 4+
n!

2
3 2n—1
p— o Tyt
sing =z —gpd e+ (CD)T G
1.2 nx2n
cosle—a—ﬁ—nui—(—l) @)l
In(1 + z) CAgan Pt (gl <)
n r)=x——+—+ -+ (- — x
2 3 n
i [0
1 a: n
(1+4) z()

4.4 Fourierove rady

Py, 5y = priestor po castiach spojitych funkcii na intervale (a, b)

b
Na Py, 1y definujeme skaldrny sucin ako (f,g) = [ f(x)g(x)dx.
a

b
Tento skaldrny saéin definuje metriku p(f,g) = \/f(f(x) — g(2))?dz, ktord sa tiez nie-

a
kedy nazyva strednd kvadratickd odchylka funkcii f a g. Ak postupnost funkcii konverguje
k nejakej funkcii podla tejto metriky, tak hovorime, Ze tdto postupnost konverguje v strede.
Konvergencia v strede vyplyva z rovnomernej konvergencie a z konvergencie v strede zasa
vyplyva, ze uvedeni postupnost mozno integrovat ¢len po ¢lene.

Definicia 6. Ak (¢,);2; je ortonormalna postupnost funkcii z P, 1y a f € Py 1), tak cisla

(f, i) nazyvame Fourierove koeficienty funkcie f a rad > c¢;p;, kde ¢; = (f, ;) sa nazyva
n=1
Fourierov rad funkcie f podla systému (¢p,).

2 . : ’ £ 4 2 1 cosnx sinnz
Definicia 7. Fourierov rad podla ortonormélneho systému funkcii N R

nazyva trigonometricky Fourierov rad. Ak ho vyjadrime s pomocou kosinov a sinov (teda bez
normovania), tak dostaneme

1 o0
f(z) ~ 5% + Z(an cos nx + by, sinnzx),

n=1
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kde koeficienty sa

1 2
apn, = —/ f(z) cosnzdz,
0

™

1 2
b, = — / f(x) sinnzdx,
T Jo

pren=12...a
1 2

ap = — f(x).

™ Jo

n
Veta 25. Zo vsetkych sictov 6, = > dper najmensiu strednid kvadratickid odchylku od f
k=1
md n-ty ciastocny sucet s, Fourierovho radu.
Désledok 4. Pre kazdy ortonormdlny systém (o) a kaZdi funkciv f € P v plati

n

1> ewon = fIP = AP =D ke
k=1

k=1
(cr st Fourierove koeficienty.)

Dosledok 5. Ak trigonometricky rad konverguje v strede k nejokej funkcii, tak jeho koefi-
cienty su prave Fourierove koeficienty tejto funkcie.

Veta 26 (Besselova nerovnost). Pre kaZdy ortonormdlny systém (py) a kaZdi funkciu f
plati nerovnost
n
> < IfII”
k=1

Daésledok 6. Pre trigonometricky Fourierov rad md Besselova nerovnost tvar

1 > 2 [ott
Gt @) <] [ P
n=1 a

Dosledok 7. Pre Fourierove koeficienty po castiach spojitej funkcie f plati lim a, =
n—oo
lim b, = 0.

n—oo

Definicia 8. Ortonormélny systém (¢ ) sa nazyva uzavrety , ak Fourierov rad kazdej funkcie
[ € P,y podla tohto systému konverguje k nej v strede.

Veta 27 (Parsevalova rovnost). Pre kaZdi funkciu f € P, vy a kaZdy uzavrety ortonor-
mdlny systém (py) plati rovnost

oo

o=l

n=1

Definicia 9. Hovorime, Ze ortonormélny systém je 1ping, ak okrem nulovej funkcie neexistuje
v P4, vy Ziaden iny prvok ortogonalny ku vsetkym prvkom systému.

Veta 28. KazZdy uzavrety ortonormdlny systém je uplng.

Veta 29. Dve rozne funkcie f,g € P, ) maji rozne Fourierove rady podla kaZdého tplného
(a tym skor aj podla kazdého uzavretého) ortonormdlneho systému.
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Veta 30 (O rovnomernej konvergencii). Ak v uzavretom ortonormdlnom systéme Fou-
rierov rad funkcie f rovnomerne konverguje na {a,b), tak jeho sicet sa rovnd danej funkcii
(az na koneény pocet bodov).

Veta 31. Trigonometricky rad danej funkcie f € Py ony md na kaZdom intervale dlzky
27 ten isty tvar. Ak f je pdrna funkcia, tak b, = 0 (koeficienty pri sinusoviyjch célenoch si
nulové), ok f je pdrna funkcia, tak a, = 0 (koeficienty pri kosinusovych élenoch si nulové).
Trigonometricky rad pdrnej funkcie sa nazyva kosinusovy rad, trigonometricky rad nepdrnej
funkcie sa nazjva sinusovy rad.

Veta 32. Ak je funkcia f spojitd na intervale (—m,7) a md na (—7, ™) po Castiach spojiti
derivaciu a plati f(r) = f(—m), tak trigonometricky rad funkcie f konverguje rovnomerne
na intervale (—oo, 00).

Veta 33. Nech funkcia f a vsetky jej derivdcie aZ do rddu k (vrdtane) si spojité a spliaji
podmienky f(r) = f(—n), f'(r) = f'(=7), ... f®(x) = f®)(=x). Nech md funkcia na in-
tervale (—m, ) po Castiach spojitd deriviciu (k+1)-vého rddu. Potom mozZno trigonometricky
rad funkcie f k-krdt derivovat élen po clene.

Veta 34. Nech f je periodickd funkcia s periodou 2w, ktord je po castiach spojitd na intervale
(—m, 7). Potom n-ty éiastoény sucet jej Fourierovho radu mozno vyjadrit v tvare

() = - / )+ fla— )

™

sin(n + 1)z

in Z
281n2

Dosledok 8. Ak f(x) =1, tak aj s,(x) =1, a teda

: 2n+1
2 [T sin &tz
il 2 "d.=1
0

ih Z
s 231n2

pren=1,2,....

Veta 35 (O bodovej konvergencii Fourierovho radu). Ak si funkcia f aj jej deri-
vdcia po Castiach spojité na (—m, ), tak Fourierov rad funkcie f bodovo konverguje k jej
normalizovanému (spriemerovanému) periodickému predlZeniu v kaZdom bode x € R.

Lema 2. Ak g(x) je po dastiach spojitd funkcia na intervale (a,b), tak

b
lim g(t)sinntdt =0

n—oo
a

a tiez ,
lim g(t) cosntdt = 0.

n—oo

Veta 36 (Diniho veta). Fourierov radu funkcie f € Pi_ ry konverguje v bode x k jej
normalizovanému periodickému predlZeniu, tak existuje také c¢islo § > 0, Ze integrdl

konverguje. (pq(t) = f(z+1t)+ f(x—t)—2f(x), kde f je normalizované periodické prediZenie
f)
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Veta 37 (Fejérova veta). Ak je funkcia f(x) spojitd na intervale (—m,m) a plati f(—m) =
f (), tak postupnost on(z, f), kde

so(x) +s1(z)+ -+ sp-1(x)

on(z, f) =

rovnomerne konverguje na celom R k periodickému predlZeniu funkcie f(x).

Veta 38 (Weierstrassova). KaZdi funkciu f(x) spojiti na intervale (—m,m) s vlastnostou
f(=m) = f(n) mozno na tomto intervale s lubovolnou presnostou aproximovat trigonomet-
rickymi polynomami.

Veta 39. Trigonometricky systém funkcii je uzavrety. To znamend, Ze pre kaZdi funkciu
J € P_x = a pre kaZdé cislo e > 0 strednd kvadratickd odchylka n-tého ciastocného sictu jej
Fourierovho radu podla trigonometrického systému je pre vietky dostatocne velké n mensia
ako e (||f — snll <e).

Fourierove rady som pisal podla [BS].
Napisal som to velmi zlozito, pretoze o tom ni¢ neviem.
Laub

5 Riemannov integral

Riemannov integradl jednej a viacerych premenngch a jeho zdakladné vlastnosti. Nutné a posta-
Cugice podmienky integrovatelnosti, mnoZiny integrovatelngych funkcii. Metody vypoctu (Fu-
biniova veta, veta o transformdcii.)

5.1 Definicia Riemannovho integralu v R

O funkcii f: (a,b) — R predpokladame, Ze je ohranicena.

Definicia 1. Delenim intervalu {(a,b) rozumieme kazdt koneéni mnozinu bodov {xg,z1,
ey Znh kdea=29 <2y <...<x, =0

Delenie D; sa nazyva zjemnenim delenia Dy, ak Dy C D;.

Oznacujeme d; = (x;_1, ;) a Ax; = x; — x;_1.

Norma delenia D n(D) := max{Axz;:i=1,...,n}.

Horngm (dolngm) R-integralnym sictom rozumieme ¢&islo U(f, D) = > M;Ax; (L(f, D)
i=1

ol

m;Az;), prifom M; = sup f(z) (m; = inf f(z)).

i=1 z€d; z€d;

R-integrdlnym sictom rozumieme &islo S(f, D) = Xn: f(ti)Ax;, kde t; € d; je lubovolny
bod intervalu d;. =
Tvrdenie 1. Mnoziny {L(f,D)}p a {U(f,D)}p st ohranicené.
Tvrdenie 2. Ak Dy je zjemnenim D1, tak L(f, D1) < L(f, Do) a U(f,D1) > U(f, Do).
Tvrdenie 3. Ak Dy, Do st lubovolné delenia intervalu {(a,b), tak L(f,D1) < U(f,D2).
Definicia 2 (R-integralu). Horngm Riemannovym integrilom z funkcie f na (a,b) roz-
b

umieme infimum hornych integralnych suctov U(f, D), oznacujeme [ f(z)dx.
a
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Dolnygm Riemannovym integrdlom z funkcie f na (a,b) rozumieme suprémum dolnych
b
integralnych suctov L(f, D), ozna¢ujeme [ f(z)dx.
a
Hovorime, ze f: (a,b) — R je integrovatelnd v Riemannovom zmysle (mé R-integrél), ak

8 — o

b
f(z)dx = [ f(z)dz. Ich spoloéni hodnotu nazgvame Riemannovym integralom a oznacu-
a

jeme f f(z)dz.

Triedu R-integrovatelnych funkcii oznacujeme R({(a, b)).

/: flz)dz < /jf(m)dx

Tvrdenie 5. Funkcia f € R{a,b) < Ve > 03Dy U(f, Do) — L(f, Do) < €.

Tvrdenie 4.

Triedy integrovatelnych funkcii

Tvrdenie 6. Ak f: (a,b) — R je spojitd, tak f € R({a,b)).

Definicia 3. Hovorime, Ze mnoZina () # M C R mé Jordanovu mieru 0, ak pre kazdé € > 0
existuje konecny pocet uzavretych intervalov dj ...d; takych, ze

(i) ; |di| <e
(if) Ve € M 35 € {1,...,k} tak, ze x je vnitorny bod dy.

Tvrdenie 7. Nech f: (a,b) — R je spojitd na {a,b) s vgnimkou bodov mnoziny M C (a,b).
Nech M md Jordanovu mieru 0. Potom f € R({(a,b)).

Tvrdenie 8. Ak f: {a,b) — R je na {a,b) monotdnna, tak f € R{a,b).

Plati to aj pre funkcie s ohranifenou variiciou, pretoZe tieto mozno napisat ako rozdiel
dvoch neklesajucich funkcii.

Zakladné vlastnosti R-integralu

Veta 1. Ak f € R{a,b) a c € R, tak cf € R{a,b) a plati

/ab cf(x)dx = c/ab f(z)dx.

Veta 2. Ak f,g € R{a,b), tak f +g € R{a,b) a plati

/ab(f +g)(x)dx = /ab f(x)dx + /abg(x)dx.

Veta 3. Nech f,g € R(a,b) a nech pre x € {a,b) plati f(z) < g(x). Potom plat{

/a ’ flaydr < / " (@)
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Veta 4. Nech f € R{a,b) a |f(z)] < M na {(a,b). Potom

/ab f(a)dz

Veta 5 (Aditivna vlastnost integralu). Nech funkcia f: (a,b) — R je ohrani¢end, majme
b

< M- a).

c€R, a<c<b. Potom f € R(a,b)y & f € Rla,c) A f € R(c,b). Navyse plati: [ f(z)dx =

c b

[ fx)dx + [ f(z)dx

Veta 6. Nech f € R{a,b), oznaéme m := <in£> f, M :=sup f. Nech p: (m, M) — R je tam
a (a, b)

spojitda. Potom o(f(x)) € R{a,b).

Vo vSeobecnosti neplati, ze ak dve funkcie st Riemannovsky integrovatelné, tak aj ich
zlozenie bude Riemannovsky integrovatelné. (Podla pozndmok z prednasky. Presnejsie pove-
dané, podla poznamky prednasajiceho poznacenej v pozndmkach z prislusnej prednésky.)

Veta 7. Nech f,g € R(a,b). Potom
(i) f.g9 € Rla,b),
(i1) ak naviac inf g > 0 (pre g > 0), alebo supg < 0 (pre g <0), tak 5 € R{a,b),

b b
(iii) |f] € Rla,b) a plati |[ f(a)dz| < [|f(@)lde.

Integral ako limita integralnych stuétov

Definicia 4. Hovorime, Ze ¢islo A € R je limitou mnoZiny integrdlnych sictov {S(f,D)}p

pre normu delenia idicu k 0, oznacujeme A = (lli)r)n oS(f’ D), ak (Ve > 0)(36 > 0)(VD) plati
n g

n(D) < d=|S(f,D)—A| <e.

Vencko poznamenal, Ze definiciu limity postupnosti aj tejto limity spaja Mooreova-Smi-
thova definicia limity.

b
Veta 8. Ak f € R{a,b), tak existuje (l[i)r)n OS(f,D) a plati (hr)n S(f.D) = [ f(=)
Naopak, ak existuje (lgr)n OS(f, D), tak f € R{a,b) a plati (hI)n S(f,D ff x)dzx.

Definicia 5. Hovorime, Ze postupnost deleni Dy intervalu (a, b) je normdlna, ak khm n(Dy)
—00

=0.
b

Veta 9. Ak f € R(a,b), tak pre vsetky normdlne postupnosti (Dy)32, plati: [ f(x)dz =

Veta 10. Majme f,g: {a,b) — R (ohranicené). Nech pre x € {a,b)\ M f(x) = g(z), pricom
M je mnozina s Jordanovou mierou 0. Potom

b b
(i) bud sicasne f € R{a,b) aj g € R(a,b) a plati [ f(z)dx = [ g(x)dz,

a

(#i) alebo sicasne f ¢ R{a,b) aj g ¢ R{a,b).
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Integral ako funkcia hornej hranice

Veta 11. Nech f € R{a,b). Pre x € (a,b) oznaéme F(z) := [ f(t)dt. Potom

a

(i) F je na {a,b) spojitd,

(i1) navyse, ak je f v bode xq spojitd, tak F je v xq diferencovatelnd a plati F'(xq) = f(xo).
Veta 12 (Leibnitz-Newtonov vzorec). Nech f € R{a,b), nech F je na {(a,b) primitivna
funkcia k f. Potom fbf(x)dx = F(b) — F(a) =: F(x)|%.

Ak funkcia f mé primitivnu funkciu, hovorime, Ze je integrovatelné v Newtonovom zmysle.
Vety o strednej hodnote

Veta 13 (1.Veta o strednej hodnote). Nech f,g € (a,b), nech pre z € {(a, b) jeg(x) > 0(<

0). Oznaéme M = sup f, m = <mf f. Potom ezistuje X € (m, M) také, Ze ff x)g(z)dx =
(a,b)

Af g(z)de.

Dosledok 1. Ak f: <a7b> — R je spojitd na (a,b), g € R{a,b), g(x) > 0(< 0), tak existuje

€ (a, b) ffgdx— g(z

p%w

Veta 14 (2.veta o strednej hodnote). Nech f: <a b) — R je tam monoto’nna g € R{a,b).
b

Potom ezistuje c € R{a,b) také, Ze [ f(x)g(x)dz = fg Ydz + f(b fg

Metédy vypocétu urcitého integralu

Veta 15 (per partes). Nech u,v: (a,b) — R st tam spojite diferencovatelné. Potom

b

b
[ @)o(@)de = u(@)o(@)[’ - [ ulx)v'(@).

a a

Veta 16 (substituéna metéda). Nech f je spojitd na {(a,b), ¢ spojite diferencovatelnd na
(a, B), mech (@) = a, ¢(B) = b. Potom

b B
/}quzjfwunwmm

TODO Vencko spomenul, Ze tieto vety platia obecnejsie, mozno to doplii.

5.2 Nevlastné jednorozmerné integraly
) A
/ f(z)dx := Alim f(x)dx
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Ak existujt ff Ydz aj f f(x)dz, tak f f(x)dz definujeme ako ich stcet.

Tiez sa deﬁnuju nevlastne integraly pre neohramcene funkcie. Pre nevlastné integraly
existuju rozne kritériad konvergencie: Cauchy-Bolzanova podmienka, porovnavacie kritérium,
Abelove a Dirichletove kritérium - pozri [BS] alebo [GD].

5.3 Riemannov integral v R"
Integral ohraniéenych funkcii s kompaktnym nosi¢om

Ohrani¢ené funkcie s kompaktngm nosi¢om budeme znaéit By(R").

Definicia 6. Nech pre kazdé i = 1,...,n je dany konecny systém m, nadrovin «o;; := {z =
(1,...,2n) € R"z; = a5}, kde j = 1,...,m; +1 a ajin < ... < @m, S0 realne &isla.
Zjednotenie tychto nadrovin nazyvame delenie priestoru R™.

Definicia 7. Hovorime, Ze n-rozmerny interval I = J; x --- x J,, je polootvoreny sprava, ak
kazdy z jednorozmernych intervalov J; j polootvoreny sprava.

Funkciu s: R” — R nazyvame elementdrna s-funkcia, ak existuje delenie D(R"™) priestoru
R"™ také, ze funkcia s je konstantnd na kazdom intervale delenia D(R™). MnoZinu vSetkych
elementarnych s-funkcii zna¢ime S.(R").

Definicia 8. Horng R-integrdl funkcie f € By(R") je

n

(Rb) / fdv .= inf{(Ls)/ sdV € R;s € S.(R"),s > f}.
Dolny R -integrdl funkcie f € Bo(R™) je

(R [ fav .= sup{(Ls)/ rdV € Ryr € S.(R"),r < f}.
R™ n

L® v predchadzajicej definicii znamené integral zo schodovitej funkcie.

Definicia 9. Funkciu f € Bo(R") nazyvame riemannovsky R°-integrovatelnd na R", ak
horny a dolny R'°-integral st rovnaké. Spoloénti hodnotu oboch integralov nazyvame Rie-
mannov R*-integrdl a oznacujeme ho (R"°) f]R" fdV . Mnozinu vietkych R*-integrovatelnych
funkcii na R™ z By(R") zna¢ime R (R™).

Riemannov integral ohranicenej funkcie f na ohranicenej mnozine A C R" sa definuje
ako jej integrél cez celé R" po dodefinovani nulou mimo mnoZiny A. Mnozinu riemannovsky
integrovatelnych funkcii na mnozine A znac¢ime R°(A).

5.4 Metody vypocétu viacrozmernych integralov

Tieto vety sme mali formulované pre Lebesguove integraly.

Veta 17. Nech mnoZina A C R" je kompakind a funkcia f: A — R je spojitd na A. Potom
@) [ s =) [ (] s v @@
A

Definicia 10. Nech A C R" je otvorend mnozZina. Zobrazenie g: /A — R" sa nazyva regu-
larne, ak
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(i) g je injektivne zobrazenie,
(i) g € C*(AR"),
(iii) Jacobiho determinant zobrazenia g v kazdom bode t € A je rozny od nuly.

Veta 18. Nech A CR" a D C R" st otvorené mnoZiny a g: A — D je surjektivne requldrne
zobrazenie (x = g(t)). Ak funkcia f: D — R je spojitd a mnoZina A C D je meratelnd,
potom plati

1) [ v =) [ flallawlav.

“1(4)
5.5 Par poznamok

V skriptach [NV2] (tiez [SSN, Veta 5.5.2]) je v dodatku tato pekna veta:

Veta 19. Ohranicend funkcia f: (a,b) — R je R-integrovatelnd vtedy a len vtedy, ak mnoZina
jej bodov nespojitosti ma Lebesguovu mieru 0.

Ako priklad na dvojicu riemannovsky integrovatelnych funkcii, ktorych zlozenie nie je
riemannovsky integrovatelné, mozeme pouzit funkcie f: (0,1) — (0, 1), f(%) = %, FR\Q) =
0 (tato sa tusim vold Riemannova funkcia) a g: (0,1) — (0,1), g(0) =0, g(z) = 1 pre = # 0.
g o [ je Dirichletova funkcia. R-integrovatelnost funkcie f vyplyva z predchddzajicej vety.

Veta 8 v [NV2] asi nie je dokazovana dobre, spravny dokaz je v [JAR].

Citatel si iste rad premysli platnost nasledujiiceho tvrdenia.
Neubrunn+Vencko

6 Parametrické integraly

Parametrické integrdly, spojitost a derivdcia integrdlu zdvislého od parametra.

Veta 1. Nech A C R" je meratelnd a B C R™ je otvorend mnoZina a funkcia f: Ax B — R
je spojitd na A x B. Predpokladajme, Ze existuje majoranta g € L(A) takd, Ze |f(x,t)| < g(z)
pre vsetky x € A, t € B. Potom funkcia h: B — R s hodnotami

h(t) = (L) / Fa 8)dVi (x)
A

je spojitd na B.

Veta 2. Nech A C R" je meratelnd a B C R™ je otvorend mnoZina. Nech funkcia f: AXB —
R je spolu s parcidlnymi deriviciami 0f/0t;, 7 = 1,...,m (t = (t1,...,t,) € B, x =
(z1,...,2,) € A) spojitd na Ax B a splria podmienky | f(z,t)| < g(z), |0f/0t;(z,t)| < g;(z),
kde g,g1,- .. gm sU funkcie z L(A). Potom funkcia h z predchddzajicej vety je z triedy C'(B)
a jej parcidlne derivdcie si dané rovnostou

St’jxt) - ggm,wdw
A

prej=1,...,maté€b.

Na cvic¢eniach si to uz dotvorite.
Durikovié
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7 Krivkovy integral
Krivkové a plosné integrdly, zdkladné vlastnosti a vypocet.
7.1 Krivky v R"

Definicia 1. Nech g: (a,b) — R" je zobrazenie s hodnotami g(t) = (g1(t),...,gn(t)) pre
t € {(a,b) také, ze

(i) g; € C*({a,b)) prei=1,...,n,

(i) ¢'(t) = (91(1), -, gn(t)) # 0 € R" pre t € (a,b).

Potom zobrazenie g nazjvame C!-parametrickd reprezentdcia na (a, b) trajektérie k = {g(t) €
R"™;t € {a,b)}.

Definicia 2. Nech g: (a,b) — R" je C'l-parametricka reprezentacia trajektérie k C R” a
nech G: (o, ) — R je zobrazenie z triedy C!({c, 3)) s vlastnostami

(i) G(a) =a, G(B) =,
(ii) G'(7) > 0 pre vSetky T € («, 3).

Potom zobrazenie f = go G: (a,3) — R" je Cl-parametrickd reprezentacia trajektérie k
ekvivalentna s g.

Definicia 3. Triedu v vietkych ekvivalentnych C'-parametrick§ch reprezentécii g danej tra-
jektérie £ C R™ budeme nazyvat krivkou z R™ a g € v jej C'-parametrickou reprezentaciou.

Definicia 4. Nech g: (a,b) — R" je Cl-reprezenticia krivky v z R"™ a nech G: (o, 3) — R
je zobrazenie z triedy C*((a, b)) s vlastnostami:

(i) G(e) =b, G(B) =a,

(ii) G'(7) < 0 pre vSetky t € (o, 3).

Potom f = goG: (a, 8) — R" reprezentuje opacne orientovani krivku k ku krivke . Krivku
K oznacCujeme —y.

Definicia 5. Ndsobnost bodu x krivky ~ s parametrickou reprezentéciou g: {a,b) — R" je
pocet bodov t € (a, b), pre ktoré x = ¢(t). Body krivky s nasobnostou 1 nazjvame jednoduché
body.

Bod g(a) nazgvame zaciatoéngm a g(b) koncovgm bodom krivky g. Ak g(a) = g(b), krivka
sa nazyva uzavreta.

Krivka, ktord ma iba jednoduché body sa nazyva jednoduchy oblik. Uzavreta krivka sa
nazyva jednoduchd, ak kazdy jej bod je jednoduchy okrem bodu g(a), ktory mé nasobnost 2.

7.2 Dlzka krivky a integral 1.typu cez krivku

Definicia 6. Nech je dana krivka v z R" a g: {a,b) — R" je jej C'-parametrick4 reprezen-
tacia. Potom dizka krivky ~ je

b b
Vi(y) = / ds := (L) / o/ (B)dt(= (R) / g/ (6)|de).
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Definicia 7. Nech v z R” je krivka a g: (a,b) — R" je jej C''-parametrickd reprezentacia.
Nech funkcia F': (D C R") — R, kde D je otvorend mnozina a v C D, je spojita na . Potom
krivkovy integrdal 1.typu definujeme rovnostou

b
/Fds ::/F(s)ds = (L)/ Flg(t)]|g’(t)|dt.
v ¥ a
Mnozinu vSetkych funkcii, pre ktoré je krivkovy integral prvého typu cez + konecny,
budeme oznacovat Ly (7).

Veta 1. Nech v je krivka z R", Fy, F5 € L1(7y) a ¢ € R. Potom
(i) [(F1+ F2)ds = [ Fids + [ Fads
Y o ¥

(ii) [cFids =c [ Fids
v v

(i) [ Fids < [ Faods, ak Fy < F> na 7.
8! 8!

(iv) [Fids= [ Fids.
8! -

Krivkovy integral pre krivky po Castiach hladké sa definuje ako stucet integralov cez hladké
aseky.

7.3 Krivkovy integral 2.typu
Diferencialne formy 1.stupna

Definicia 8. Nech D C R" je otvorend mnozina. Zobrazenie w: D — (R™)* sa nazyva
diferencidlna forma 1.stupria (krdtko 1-forma) na D.

Definicia 9. Budeme hovorit, ze 1-forma w: (D C R") — (R")* je exaktnd na D (D je
oblast), ak existuje funkcia f: D — R tak, Ze df = w.

Hovorime, 7e 1-forma je z triedy C*(D), ak kazd4 jej komponenta w; € C*(D) (D je
otvorend mnozina).

Veta 2. Nech w = widxy + ...+ wpdz, je exaktnd 1-forma triedy C*(D). Potom

Bwi o 8wj

8xj B 81‘1'7

i,7=1,...n na D.

1-forma spliiajiica podmienku z predchadzajicej vety sa nazjva uzavretd.
Nutna podmienka z predchadzajiacej vety je v pripade jednoducho suvislej oblasti aj
postacujica.

Definicia a vlastnosti

Definicia 10. Nech v C R" je po castiach hladké krivka a zobrazenie g: (a,b) — R" je
jej Cl-parametricka reprezentacia na (a,b). Dalej nech w je spojitd 1-forma na otvorenej
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mnozine D C R", priCom v v C D (t.j. trajektéria krivky lezi v D). Potom krivkovy integrdl
2.typu z w cez krivku v je

/7 w = / wnde -+ wndny = (1) [ wlo®g'(®) = (D) / b{iwi[ga)]g;(t)}dt.

Veta 3. Nech y je po castiach hladkd krivka v R"™, w a £ nech si spojité 1-formy na otvorenej
mnozine D, v ktorej lezi 7. Potom

(i) [(w+¢&)ds = [wds+ [&ds
(i) [(cw)ds = c [wds

(i) [ wds= [wds+ [wds, ak 1, 72 s po castiach hladké disjunkiné krivky v R".
Y1+72 71 Y2

(iv) [ wds=— [wds.
- 2l
Veta 4. Nech D C R" je otvorend mnoZina a nech w je spojitd 1-forma na D. Potom
nasledujice tri tvrdenia su ekvivalentné:
(i) w je exakind,
(1) pre kaZdi uzavretd po castiach hladkd krivku v C D integrdl fv w =0,

(i11) ak y1 a y2 st dve lubovolné po castiach hladké krivky y D s tym istym zaciatongm a

koncovym bodom, potom f'Yl w= [ w.

Fyzikalny vyznam krivkového integralu 2.typu je praca v silovom poli. Krivkovy integral
1.typu mozno pouzit na vypocet hmotnosti, faziska a roznych momentov.

7.4 Veta o divergencii

Integraly na varietach by som sem asi ani nemusel pisat, vSak? (Mozno by som aj mal,
ale sa mi nechce.:=() Aj pre integraly na varietach si dva druhy. Pri integraloch druhého
druhu treba uvazovat aj orientéciu variety.

Definicia 11. Hovorime, Ze mnozina D C R" je reguldrna oblast, ak:
(i) D je otvorena a ohrani¢ena,

(ii) pre kazdé zg € D existuje okolie U bodu zg a zobrazenie F: U — R F € C*(U) s
grad F(x) # (0) pre z € U priom 0DNU = {z €; F(z) =0}, DNU = {z €; F(z) < 0}.

Definicia 12. Nech D C R" je reguldrna oblast v R™ a v # 0 je normélovy vektor k 9D v
bode x. Potom v nazyvame vonkaj$ou normdlou v bode z € 9D, ak existuje § > 0 tak, Ze
x+tvreDpre —d<t<Oax+tveR"—Dpre0<t<d.

Veta 5 (Veta o divergencii, prva verzia). Nech D C R" je reguldrna oblast, v(x) je
Jjednotkovy vektor vonkajsej normdly k 0D v bode x € OD a nech w je 1-forma z triedy
CY(D). Potom

/a @) vla)ds, 1 = (1) /D div w(z)dV, (z),

ak oba integrdly existuji. (Integrand na lavej strane je skaldrny sucin 1-kovektora z (RY)* a
vektora z R". - Co to ale znamend, to sa ma nepytajte.)
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(R7)* sa oznacovala mnozina vSetkych alternujucich r-linedrnych zobrazeni z (R™)" do R.

Désledok 1. Nech st splnené predpoklady predchddzajicej vety, kde w = f(z).g(x)dz;.
Funkcie f,g: clD — R st z triedy C*(cl D). Potom

© [ 105 @) = [ gt - @) [

aD p 0%;

(x)g(2)dVn(x)

Veta 6. Nech D C R" je ohranicend otvorend mmnozina, ktorej hranica je 0D = Ay U... U
A, UE. MnoZiny Ay, st relativne otvorené podmnoZiny 0D, Ay je kompaktnd podmnoZina
nejakej (n — 1)-variety z triedy C* a E je kompaktnd pomnoZina (n — 2)-variety triedy C*,
pricom A;NA; C E prei # j. Ak v(z) je jednotkovy normdlovy vektor k Ay prek =1,...,m
v bode © € Ay a w je 1-forma z triedy C*(D), potom

(L) / divwdV, = / w.vds,_1
b k=17 Ak

Predchadzajica veta sa tyka napriklad takych mnozin, ako n-rozmerny simplex a n-
rozmernd kocka.

Veta 7 (Veta o divergencii, druha verzia). Nech D* C R" je reguldrna oblast s kladnou
orientdciou a s kladne orientovanou hranicou 0DF a w je 1-forma z triedy C*(D). Potom

/ w:/ dw,
oD+ D+

kde dw je vonkajsi diferencidl formy w.
Nasledujtice tvrdenia st Speciadlne pripady vety o divergencii:

Veta 8 (Greenova veta). Oznacme w(x,y) = M(x,y)dz+N(z,y)dy. Potom (ak st splnené
predpoklady vety o divergencii)

de+Ndy:/ ((’9]\7(9]\4) dzdy.
oD+ p+ \ 9z  Jy

Gauss-Ostrogradského vzorec - uréuje vztah medzi objemovym a plosnym integralom.

(L)/ <3P + 8762 + 8R) dVs(z,y, z) = / Pdydz + Qdzdx + Rdxdy
p+ \ Oz oy 0z oD+

Stokesova veta - udava vztah medzi plosnym a krivkovym integralom v R®.
Nech krivka C' ohranic¢uje plochu S. Potom

_ orR _0Q or _OR 0Q _ob
/Cde+Qdy+RdZ—//g<ay 6Z>dydz+<az 8x>d2dx+<8x 8y)dxdy

inak: [w = [[rotw
c s

Funkcia bude ist tam.
Feckan

8 Lebesguov integral

Lebesguov integrdl v R™a jeho vlastnosti, porovnanie s Riemannovym integrdlom.
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8.1 Meratelnost a miera mnozin

TODO Na cvikich z funkcionélky s Teres¢akom sme asi tiez robili Lebesguovsky meratelné
mnoziny, ale nenasiel som zosit.

TODO Lebesguov integral by mal byt aj v [GD] na str.476 (7?77).

TODO Cosi o Lebesguovej miere by mohlo byt aj v Salat: Metrické priestory.

TODO ?Fubiniho vetu aj vo formulécii pre sicin meratelnych priestorov?

Na definiciu Lebesguovho integralu treba mat najprv zavedeni Lebesguovu mieru. Jeden
pristup k zavedeniu Lebesguovej miery je pomocou indukovanej vonkajSej miery (z knihy
[RN]), iny k nemu ekvivalentny pristup pouzil Durikovi¢ na prednéske. Najprv zavedenie
Lebesguovej miery z Riecana:

Definicia 1. Nech E C P(X), § € E. Nech u: E — R je funkcia, ktor4 splia podmienku

n(0) =0
El,EQ S E,El N Ey = @,El UFEy, € E = ,U(Ell U EQ) = /,L(El) + /.L(EQ) (81)

Potom hovorime, ze funkcia u je aditivna mnoZinova funkcia definovana na E.
Ak 1 splia aj podmienku

E,€En=12,.. . ENE =0prei#j | JE, €E= p(

n=1 n=

En) = Z 1(En), (8:2)

tak hovorime, ze p je o-aditivna, alebo ze je zovseobecnend miera.
Ak je zovSeobecnend miera nezdpornd, hovorime, Ze je miera. Ak nadobtda len konecné
hodnoty, hovorime o konecnej miere.

Teres¢ak definoval mieru tak, Ze namiesto podmienky u() = 0 pozadoval existenciu
B € S takého, 7ze u(B) < oco. Obe definicie s ekvivalentné.

Definicia 2. Neprazdny systém E podmnozin X budeme nazyvat okruh, ak
(i) ELFeE=FEUF €E,
(ii) E,FeEE=FE\F€E,.

E sa nazyva o-okruh, ak je okruh a plati
E,eE (n=12,..)= ) E,€E.
n=1

Ku Tubovolnému systému R C P(X) existuje najmensi o-okruh, ktory ho obsahuje a
oznacuje sa o(R).

Definicia 3. Ak R C P(X) je okruh a X € R, tak R sa nazyva algebra. Ak algebra je
stcasne o-okruh, tak sa nazyva o-algebra.

Veta 1 (vlastnosti miery na okruhu). Nech u je miera definovand na okruhu R. Potom
(i) E,F €eEECF = u(E) < u(F) (1 je neklesajica),
(i) ak asponi jedno z cisel u(E), u(F) je koneéné a E C F, tak u(F \ E) = u(F) — p(E).

(Tejto vlastnosti hovorime subtraktivnost s podmienkou konecnosti.)
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(iti)) E€ER, E, R, EC |J E, = u(E) <

n=1

w(Ey) (o-subaditivita)

e

(iv) A; €8, A; C Ajpq prei € N = pu(J A;) = lim p(A4;) (polospojitost zdola)
=1 n—oo

1=

(v) A; €8S, A; D Aip1 prei € N = u(() 4;) = lim u(A;) (polospojitost zhora)

1=

Definicia 4. Nech R C P(X) je okruh a y je miera na R. Pre lubovolni mnozinu A € P(X)
definujeme

p(A) =inf{> uE,);AcC | En;EneRn=1,2,.} (8.3)
n=1

n=1

(pri¢om infimum prazdnej mnoziny kladieme oo). Takto definovand mnozinové funkcia p* na
P(X) sa nazyva vonkajsia miera indukovand mierou p.

Veta 2. Nech p* je vonkajsia miera indukovand mierou u definovanou na okruhu. Potom
plati:

(i) p*(0) =0, p*(A) > 0 pre kazdé A € P(X),
(11) p*(A) < p*(B) pre kazdé A,B € P(X), AC B,

(iii) p*(A) < 3° p*(An), ak AC U An,
n=1 n=1

() ak E, € R, tak p*(E) = p(E).

Definicia 5. Nech p* je mnozinova funkcia definovana na P(X ) a nadobidajica hodnoty v
R, ktora splita podmienky (i)—(iii) z predchadzajticej vety. Potom hovorime, Ze u* je vonkajsia
miera.

Definicia 6. Nech p* je lubovolnd vonkajsia miera na P(X). Mnozina E € P(X) sa na-
zyva p*-meratelnd (alebo tiez p*-meratelnd v zmysle Caratheodoryho), ak pre lubovolné dve
mnoziny P C E, Q C E’ plati

p(PUQ) = p"(P)+ p (Q). (8.4)
Vidno, Ze je to ekvivalentné s podmienkou, Ze pre Tubovolné A € P(X) plati:
p(A) =p (ANE) +p (AN E'), (8.5)

z ¢oho dalej vyplyva, Ze () aj X st vidy p*-meratelné.
Systém vsetkych p*-meratelnych mnozin budeme znacit S,,-.

Veta 3 (Caratheodoryho). Systém S,- je algebra a p* je vonkajsia miera na P(X).
Systém S~ je o-algebra a p* je miera na S,-.

Veta 4. Nech u* je vonkajsia miera, indukovand mierou u, definovanou na okruhu R. Potom
S,- D o(R).

7 predchédzajicej vety vyplyva, ze plati:

Veta 5 (o rozSireni miery). Nech p je miera definovand na okruhu R. Potom ezistuje
miera 1 na najmensom o-okruhu o(R) nad okruhom R, ktord je rozsirenim mieru .
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Definicia 7. Miera p definovana na okruhu R sa nazyva o-konecnd, ak pre kazdé E € R

o0
existuje postupnost (E,)% ; mnozin z R takd, ze E C |J E, a u(E,) < cc.

n=1
Veta 6. Nech p je o-koneénd miera definovand na okruhu R. Potom existuje prdve jedno
rozsirenie miery u z R na o(R).

Definicia 8. Znakom <77 oznacujeme systém vsetkych zlava uzavretych, sprava otvorenych
intervalov.

s(<T)) oznacime systém obsahujtci prazdnu mnozinu a koneéné zjednotenia intervalov z
<7). Systém s(<7)) je okruh.

Lema 1. Nech | je mnoZinovd funkcia definovand na okruhu s(<T)) takto: I()) = 0 a
Uiy (ai, b)) = Soi i (bi — ai), ak intervaly (a;,b;) si navzdjom disjunktné. Potom [ je
miera na s(<T))

Najmensi o-okruh, ktory obsahuje s(<’T)), uz musi obsahovat vSetky otvorené, uzavreté
aj vSetky borelovské mnoziny.

Definicia 9. Vonkajsiu mieru [* indukovanii mierou / na s(<T)) nazyvame Lebesguova miera.
Systém [*-meratelnych mnoZin oznac¢ujeme L a z(Zenie [* na L znacime .

Veta 7. Jedind miera p na systéme B(R) vsetkych borelovskych mnoZin, pre ktord plati
pla,b) =b—a pre vsetky a,b € R sa na B(R) zhoduje s Lebesguovou mierou.

Tvrdenie 1. Lebesguova miera je uplnd a o-koneénd. (Miera je uplnd, ak vsetky podmnoZiny
mnozin s nulovou mierou si meratelné.)

Veta 8. Nech E € L a ¢ > 0. Existuje takd otvorend mnoZina G DO E a takd uzavretd
mnozina F C E, 2e \(\G\ E) <e, A(E\F) <e.

Désledok 1. Ku kazdej mnozine E € L existuje mnoZina Gy typu Gs (t.j. Go je prienikom
postupnosti otvorengch mnoZin) a mnoZina Fy typu F, (t.j. Fy je zjednotenim postupnosti

uzavretych mnozin), Ze Go O E D Fy a AM(Go \ E) = ME'\ Fy) =0.
Tvrdenie 2. KaZdd spocitatelnd mnozina md Lebesguovu mieru 0.
Podobne, ako sme definovali s(‘77)), mozno definovat s({7)2).

Definicia 10. E C R? patri do s({7)2) prave vtedy, ked E = 0, alebo E = (JI_, (a;, b;) x
(ciyd;), kde (a;,b;), {ci,d;) € <T). Vyjadrenie mnoziny E mozno volif tak, ze dvojrozmerné
intervaly, ktoré v iom vystupuja budu disjunktné.

1D(0) =0 a l® (UL (ai, bi) x {ci,di)) = Yoy (b — ai)(di — c).

Zavedenie Lebesguovej miery vo viacrozmere bolo v [RN] ponechané ako cvic¢enie a mé
sa urobit analogicky ako v jednorozmernom pripade.

Durikovi¢ zavadza Lebesguovu mieru trochu inak - za¢ne vlastne tak, Ze ju definuje pre
ohrani¢ené otvorené a kompaktné mnoziny. Z doteraz uvedenych viet vyplyva (podla mria),
ze bude takto zavedend miera rovnaka.

Definicia 11. Mnozina I C R" sa nazyva n-rozmerny interval v R™, ak I je kartezidnsky
stéin 1-dimenzionédlnych nedegerovanych intervalov s n-¢initelmi, t.j. I = J; x ... x J,, kde

koncové body intervalu J; st rozne realne ¢isla pre i = 1,... ,n.

Suéin dlzok intervalov Ji,...,.J, nazfvame n-rozmerna miera intervalu I a oznacujeme
Vi) >o.

Interval I nazyvame uzavrety (otvoreny), ak kazdy z intervalov Ji,...,J, je uzavrety
(otvoreny).
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Definicia 12. Nech pre kazdé ¢ = 1,...,n je dany konec¢ny systém m; nadrovin ay; :=
{r =(21,...,2n) € R"jz; = a;;}, kde j =1,...,m; + 1 a a1 <...< Qim, st redlne disla.
Zjednotenie tychto nadrovin nazyvame delenie priestoru R".

Hovorime, ze delenie D;(R") je zjemnenim delenia D(R"), ak D(R™) C D;(R").

Definicia 13. Mnozinu Y C R" nazyvame s-mnoZina (jednoduchd alebo elementirna mno-
Zina), ak existuje také delenie D(R") ap € N, Ze Y je zjednotenie koneéného po¢tu uzavretych
P
intervalov I, ..., I, generovanych delenim D(R"), t.j. Y = U L.
i=1

Miera s-mnoziny Y je definovana rovnostou V*(Y) := VI(I;) +... + VI(I,) € RT.

Veta 9. Hodnota miery V(YY) zdvisi iba od Y a nezavisi od vgberu delenia, ktoré generuje

Y.

Désledok 2. Mnozina S,, vsetkyjch schodovitjch mnozin z R" a prdzdna mnoZina tvori okruh
mnoZin. Naviac pre Y,Z € S, plati, 26 Y NZ € S, U{D} a V(Y UZ) < V(YY) 4+ V5(2).

Definicia 14. Nech G C R" je otvorend neprazdna mnozina. Potom miera mnoziny G je

VO(G) :=sup{V*(Y) e R";Y € 5,,Y C G}.
Y

Ak K C R" je kompaktn4 mnozina, tak je mieru definujeme rovnostou:

VE(K) = if{V*(2) R*:Z € S,;K €Int Z}.

Lema 2. Nech Z € S,,. Potom V°(Int Z) = V*(Z) a ok Z je kompaktnd, tak V¢(Z) = V*(Z).

Pre ohrani¢ent mnozinu sa miera vybuduje aproximativne, zdola pomocou kompaktnych
a zhora pomocou otvorenych mnozin.

Definicia 15. Nech A C R" je ohrani¢end mnozina. Vonkajsiu mieru mnoziny A definujeme
rovnostou

V(A) = igf{V"(G) eER";Ge€0,,ACG}>0.
a vnutorni mieru rovnostou

VP = sup{V¢(K) e R"; K € C,,, K C A} > 0.
K

Tvrdenie 3. Nech A C B si ohranicené mnoziny z R". Potom VP (A) <TV(A), VP(4) <
V¥(B) a V*(A) < V*(B).

Definicia 16. Nech A C R" je ohraniena mnozina. Hovorime, Ze A je b-meratelnd, ak
plati Kb(A) = V*(A). Spolo¢nti hodnotu vniitornej a vonkaj$ej miery mnoziny A nazyvame
n-rozmernd miera mnoziny A a znacime ju V(A).

Opit mozno ukézat, Ze pre kompaktné a otvorené mnoziny nova definicia miery spljva s
povodnou.

Veta 10. Systém ohranicenijch b-meratelngch podmnoZin R™ tvori okruh, ktory je navyse
uzavrety na konecné prieniky.

Definicia 17. Neohrani¢end mnozina A C R" sa nazyva u-meratelnd, ak ohrani¢end mnozina
AN B, je b-meratelné pre kazdé r > 0. (B, je otvorend gula s polomerom 7.)
Mieru neohrani¢enej mnoziny definujeme rovnostou V*%(A) := lim V(AN B,).
T—00

Veta 11. Systém meratelnych mnoZin tvori o-algebru, ktord obsahuje vsetky otvorené mmno-
ziny. V' je miera na tejto o-algebre.
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8.2 Meratelné funkcie

Definicia 18. Nech X je mnozina a S je nejaky okruh jej podmnozin. Usporiadani dvojicu
(X,S) nazgvame meratelny priestor. Ak na S je definovana nejaka miera, tak usporiadani
trojicu (X, S, ) nazyvame priestor s mierou. Mnozinu E C X, ktord F € S nazyvame
meratelnd mnoZina (S-meratelnd mnozina).

Definicia 19. Nech (X, S) je meratelny priestor. Budeme hovorit, Ze redlna funkcia f(x)
definovand na X je meratelnd na meratelnom priestore (X,S), ak pre fubovolni otvoreni

mnozinu G C R je f~}(G) € S.

Veta 12. Funkcia f je meratelnd prdve vtedy, ked mnozina f~Y(c,00) (f~Xe,00), f~Y(—o0, c),
[ —00,¢)) je meratelnd pre kaZdé c € R.

Uplne rovnako sa definujii meratelné funkcie aj v pripade, Ze namiesto R vystupuje Iubo-
volny topologicky priestor. (Teda vzor otvorenej je meratelna.)

Tvrdenie 4. Nech (X,S) je meratelny priestor, (Y, Ty) a (Z,T z) st topologické priestory.
Ak f: X —Y je meratelnd funkcia a g: Y — Z je spojité zobrazenie, tak g o f je meratelnd
funkcia.

Tvrdenie 5. Nech f,g: X — R si meratelné a ®: R> — R je spojité. Potom funkcia
U(f,9)(x) = (f(x),g(x)) je meratelnd.

Definicia 20. Nech FEi,...,F, st mnoziny z S. Nech F; U E), = () pre ¢« # k. Funkciu

> ¢ixE, nazyvame jednoduchou meratelnou funkciou.

i=1

Tvrdenie 6. Ku kaZdej meratelnej funkcii existuje postupnost (fn())52,; jednoduchgch me-

ratelngch funkcit tak, Ze f(xr) = lim f,(z). Ak f(x) > 0 tak ewxistuje takdto neklesajica
n—oo

postupnost.

Tvrdenie 7. Ak funkcie f, g si meratelné, tak funkcia h(x) = max{f(x),g(z)} je tiez
meratelnd.

Ak funkcie f1, fa,... si meratelné a g(x) = sup{fi, f2,...}, h(z) = inf{f1, fa,...}, tak
funkcie g a h si meratelné.

Ak funkcie f1, fa,... si meratelné a g(x) = limsup fi, h(z) = likn_l)'gf f&, tak funkcie g a

, k—o0
h su meratelné.

n
Definicia 21. Jednoduchti meratelnt funkciu budeme nazyvat f(x) = 3 ¢;xg, (x) jednodu-
i=1

n
chou integrovatelnou funkciou, ak u(E;) < oo pre vietky i, pre ktoré ¢; # 0. Cislo > ¢;u(E;)
i=1
budeme nazyvat integrdlom funkcie f.

Definicia 22. Integrdlom z nezépornej meratelnej funkcie f nazyvame ¢islo [ fdu, ktoré
dostaneme ako limitu postupnosti ([ f,(z)du)22,, kde (fn(2))52; je neklesajuca postup-
nost jednoduchych meratelnych funkcii konvergujica k f(z). (Hodnota integralu nezavisi od
vyberu postupnosti.)

Definicia 23. Integrdlom z meratelnej funkcie f(z) nazgvame éislo, [ f(z)dp = [ fi(x)dp—
[ f2(x)dp, kde fi(z) = f%‘fl a fo(x) = m%f, za predpokladu, Ze aspori jedno z Cisel
[ fi(@)dp, [ f2(x)du je redlne.
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Vlastnosti Lebesguovho integralu:

/(f+g)du=/fdu+/gdu
/cfdu:c/fdu

fﬁgi/fd,uﬁ/gdu

J1#+slau< [1flau+ [lgla
[ faui < [1r1dn

Veta 13. Meratelnd funkcia f(x) je integrovatelnd (=md konecny integrdl) prdve vtedy, ked
|f(z)| je integrovatelnd.

Tato vlastnost Riemannov integral nemé. Kontrapriklad je funkcia xgn(o, 1) — X (0, 1)\0-

Veta 14. Ak f(z) je meratelnd funkcia a g je meratelnd funkcia a ok |f| < g, potom f(x)
je integrovatelnd.

Veta 15 (Beppo-Leviho veta). Nech (f,(z))22, je neklesajica postupnost nezdpornych
meratelnych funkcii konvergujica k funkcii f(x), potom [ fdp = lim [ f,du. (Inak povedané
n—oo

[ lim fodp= lim [ f.du.)

n—oo

Déosledok 3. Nech (fn(x))52, je postupnost nezdapornijch meratelngch funkcii. Potom pre
(oo}

f= Z fn Platiffd/i = Zf:lffndﬂ'
n=1

Veta 16 (Fatouova lema). Ak (f,(x))S2, je postupnost nezdporngjch meratelnych funkcii

a ak f= lim f,, potom [ fdu <liminf [ f,du.

Veta 17 (Lebesguova veta). Nech (f,(x))2, je postupnost meratelngch funkcii, ktord
konverguge podla miery (alebo skoro vsade) k funkcii f(x). Nech g(x) je integrovatelnd funkcia
a nech |fn| < g. Potom f je integrovatelnd funkcia a plati:

/fdu:/ lim f,dp = lim /fnd,u.

Konvergencia podla miery znamend, ze lim p({z : |f,(x)—f(z)| > ¢}) = 0. Konvergencia
n—oo

podla miery vyplyva z konvergencie skoro vSade.
8.3 Lebesguov integral

Definicia 24. Integral podla Lebesguovej miery nazyvame Lebesguovym integralom.

Takisto sa vSak zvykne Lebesguovym integralom nazyvat aj spdsob, ktorym sme definovali
integral na ITubovolnom priestore s mierou.

Veta 18. Ak je ohranicend funkcia f riemannovsky integrovatelnd na intervale {a,b), potom
je lebesquovsky integrovatelnd na {a,b) a Riemannov integrdl sa rovnd Lebesguovmu integrdlu.

Literattira tykajtca sa miery a integralu: [RN], [D], [MEM], [ND], [SSN], [Q], [FR].
Co mi to tu vzniklo?

Durikovié
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9 Metrické priestory

Metrické priestory, uplné a kompaktné priestory. Banachova veta o pevnom bode. Aplikdcie.
Tato kapitola je spracovand podla [SSN]. St tam aj nejaké veci, ktoré sme nebrali.

9.1 Metrické priestory

Definicia 1. Nech X je mnoZina a d: X x X — R. Potom (X, d) sa nazyva metricky priestor
s metrikou d, ak:

(i) d(z,y) 2 0ad(z,y) =0 r=y
(i) d(z,y) = d(y, )
(iii) d(z,z) < d(z,y) + d(y, z) (trojuholnikové nerovnost)

Konvergencia postupnosti v metrickom priestore: lim z,, = z < limd(z,,z) = 0.

n—oo

Gule v metrickom priestore tvoria bazu topoldgie. V tejto topoldgii st uzavreté prave
mnoziny, ktoré obsahuju vSetky limity konvergentnych postupnosti svojich prvkov. Topoldgia
uréena metrikou je hausdorffovska. Kazdy bod ma spocitatelnti bazu okoli (priestor spliia
1. axiému spocitatelnosti).

V lubovolnom topologickom priestore z existencie spocitatelnej bazy vyplyva separabilita
priestoru. V metrickych priestoroch to plati aj naopak:

Tvrdenie 1. Ak metricky priestor (X, d) je separabilny, tak je aj priestorom so spocitatelnou
bazou topoldgie.

9.2 Uplné metrické priestory

Definicia 2. Postupnost (z,)52; prvkov metrického priestoru X je fundamentdina, ak k
lubovolnému € > 0 existuje ng € N také, ze pre lubovolné m,n > ng plati d(zm,,x,) < e.

Metricky priestor nazveme tiplnym, ak kazd4 fundamentélna postupnost prvkov priestoru
X konverguje v X.

Veta 1 (Cantorova veta). Nech (X,d) je metricky priestor. Potom X je uplny prdve
vtedy, ked pre kaZdi merasticu postupnost neprdzdnych uzavretjch podmnozin s vlastnostou
o0

diam A,, — 0 pre n — oo obsahuje (| A, prdve jeden bod.
n=1

Definicia 3. Podmnozina A topologického priestoru X sa nazyva mnoZina prvej Bairovej
o0
kategorie (v X), ak existuju také mnoziny A, C X (n € N) riedke v X, 7ze A = |J A,. Ak

n=1
mnozina A C X nie je prvej Bairovej kategorie v X, tak sa nazyva mnozinou druhej Bairovej

kategorie.

Veta 2 (Bairova veta). Nech (X,d) je tiplny metricky priestor, X # (. Potom X je
mnozina druhej Bairovej kategorie v X.

Veta 3 (Bairova veta o hustote). Nech (X,d) je dplng metricky priestor a nech X # 0.
nech X C X (k € N) st riedke mnoziny. Potom mnoZina X \ |J Xi je hustd v X.
k=1

Definicia 4. Ziplnenie metrického priestoru X je taky tplny metricky priestor Y, Ze X je
podpriestor Y a X =Y (X je hustd podmnozina Y').
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Veta 4. KaZdy metricky priestor md zuplnenie, toto zuplnenie je jedin€ aZ na izometriu.

Tvrdenie 2. Nech X je uplny metricky priestor a Y C X je jeho podpriestor. Potom Y je
uplny metricky priestor < Y je uzavretd mnoZina v X .

9.3 Kompaktné metrické priestory

Definicia kompaktného topologického priestoru je v otézke ¢islo 11.

Definicia 5. Topologicky priestor sa nazyva sekvencidlne kompaktny, ak kazda postupnost
mé konvergentni podpostupnost.

Veta 5. Nech (X,d) je kompaktnyg metricky priestor. Potom si ekvivalentné tieto vyroky:
(i) (X,d) je kompakiny,
(11) (X,d) je sekvencidlne kompaking,

(#ii) (X,d) je uplny a totdlne ohranideny (totdlne ohraniceny znamend, Ze pre kaZdé ¢ > 0
existuje koneénd e-siet),

(iv) Kazdd nekonecnd podmnozina priestoru (X, d) md hromadny bod. (V knihe [NS] tomu
hovoria, Ze (X,d) md tzv. Bolzanovu- Weierstrassovu vlastnost.)

V [BS] sa definuje totalne ohranic¢eny priestor ako taky, ze z kazdej postupnosti sa dé
vybrat fundamentalna podpostupnost. Je to ekvivalentné s definiciou pomocou e-sieti.

Veta 6 (Cantorova veta). Nech (X,d) je metricky priestor. Nasledujice podmienky si
ekvivalentne:

(i) X je kompakitny.
(i) Nech Fy, (k € N) si neprdzdne uzavreté mnoziny v X. Nech Fy D Fy D ... D F D
Fyi1 D .... Potom () Fy # 0.
k=1

(Ak sa nemglim, tak toto by malo platit pre topologické priestory vieobecne.)

V priestore spojitych funkcii na kompaktnej mnozine charakterizuje kompaktné podmno-
ziny Ascoliho lema. Je tu uvedena najprv vo formulacii z [SSN] (v takomto zneni ju pouzival
Medved pri dokaze Peanovej vety) a vo verzii, ktort sme mali s Teres¢akom.

Definicia 6. Nech F je mnozina funkcii f: A - Y, A C X. (X, Y - metrické priestory.) F
je rovnomocne spojitd, ak Ve > 035 > 0 Vx,2' € AVf e Fd(z,2') <d= f(«) <e.

Rovnomocné spojitost je teda nie¢o ako rovnomerné spojitost, priom ¢ nezavisi od f.

Veta 7 (Ascoliho lema). Nech A C X je kompakind podmnoZina, Y je uplny metricky
priestor a nech F' je mnoZina funkcii f: A —'Y spojitiych na A. Potom su nasledovné vijroky
st ekvivalentné.

(i) F je rovnomerne ohranidend a rovnomocne spojitd.
(i1) Kazdd postupnost prvkov z F obsahuje rovnomerne konvergentni podpostupnost.

Veta 8. Nech A je kompaking a'Y dplng metricky priestor. F C C(A,Y) je kompakind <
F je uzavretd, pre kazdé x € A je {f(x) : f € F} kompakindg a F je rovnomocne spojitd.
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9.4 Banachova veta o pevnom bode

Uvazujme o funkcii f: A — A, A C X, X je metricky priestor.
Definicia 7. Bod z € A, pre ktory plati f(zo) = z¢, nazyvame pevngy bod funkcie f.

Definicia 8. Hovorime, 7e funkcia f: A — Y, A C X, spliia na mnozine A Lipschitzovu
podmienku, ak d(f(z1), f(22)) < Ld(zx1,x2). Ak funkcia f: A — A spliia Lipschitzovu pod-
mienku s konstantou L takou, Zze 0 < L < 1, nazyvame kontraktivnou alebo kontrakciou.

Veta 9 (Banachova veta o pevnom bode). Nech (X, d) je dplng metricky priestor. Nech
f: X — X je kontrakcia. Potom f md prdve jeden pevny bod. Tento pevny bod mozno ziskat
ako limitu postupnosti (x,)°22 1 = (f(2n-1))52 4, kde x1 je lubovolny bod z X .

Navyse plati odhad d(zg,x,) < %d(m, x1), kde o = nlgr;(} T, je pevny bod f.

Aplikacie Banachovej vety o pevnom bode

Nevedel som celkom, ¢o by tu eSte mohlo byt okrem toho, ¢o robil Medved na difkéch,
tak som sem odpisal nejaké veci z [SSN].

Hladanie korena

Ak f: (a,b) = R, 0 < K; < f'(x) < K» na (a,b), tak f mé v (a,b) koreii.
F(z) =z — Mf(x). F(z) = 2 < « je koreil f. Vhodnou volbou A\ dosiahneme kontraktivnost
zobrazenia F'.

Existencia rieSenia diferencialnej rovnice

Nech P = (9,79 + a) x R, f: P — R je spojitd na P a spliia Lipschitzovu podmienku
vzhladom na y
|f(z,y1) = f(2,92)] < Llyr — val,

L > 0. Potom zaciato¢na tloha

y/ = f(x,y),y(xo) =Y

ma prave jedno rieSenie a toto rieSenie existuje na intervale J = (g, z¢ + a).
1o je rieSenim uvedenej zaciatoénej tilohy prave vtedy, ked je pevnym bodom funkcionélu
T:C(J)— C(J)

(Ty)(z) = zo + / ’ F(t,y(t))dt.

Ak definujeme na C(J) normu vzfahom ||y|| = max,cs{|y(z)|.e 2"}, tak ziskame Bana-
chov priestor a T" je na nom kontraktivny.

Poznamka pisatela paskvilu: Mohlo by sa mozno zdaft, Ze takymto pouzitim Banachovej
vety sme odvodili lepsi vysledok, ako na prednaske z ODR, kde sme vyslovili vetu, ktora
hovorila iba to, Ze existuje nejaky interval, na ktorom existuje riesenie. V skuto¢nosti dizka
intervalu v dokaze tejto vety zavisela iba od konstanty L a nie od bodu tg, teda aj pri
tomto dokaze vieme predlZif riesenie na cely interval, na ktorom je funkcia lipschitzovska.
(Za predpokladu, Ze rieSenie ,nevybehne“ z oblasti D.)
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Existencia implicitnej funkcie

Veta 10 (Veta o implicitnej funkcii). Nech A = (zo,90) € R*. Nech O(A) C R? je
kruhové okolie bodu A. Nech F(x,y) a BF(E y) = = F,(z,y) st spojité redlne funkcie na O(A).
Nech dalej F(xo,y0) = 0 a Fy(zo,%0) # O Potom ezistuju také ¢isla &,n > 0, Ze rovnicou
F(z,y) =0 je na intervale J = (xg — &, x0 + &) definovand jedind spojitd funkcia f: J — R,
Ze f(xo) = yo, F(z, f(x)) =0 a|f(z) —yol <7 pre kazdé x € J.

B ={g e C(J): g(xo) = yo,|9(x) — yo| < n pre kazdé z € J}
d(91,92) = max\gl ga(7)|

(z) =
d je metrika na B a (B, d) je Gplny metricky priestor

(Tg)(z) = g(z) — £F(z,9(x)), kde K je také, Ze I}, < K na oblasti D, D je také okolie, Ze
F, #0naD.

Zovseobecnenia Banachovej vety

Veta 11. Nech (X, d) je uplng metricky priestor a nech operdtor T: X — X je taky, Ze T™
pre nejaké n € N je kontraktivny operdtor. Potom T md v X prdve jeden pevny bod.

Veta 12. Nech X je Banachov priestor. Nech ¢y € X je dany prvok. Nech S: X — X je
linearny ohraniceny operdtor a nech

oo
SIS < o
n=1

Potom operdtor
T(x) =x0+ S(x)

md prave jeden pevny bod.

Hust4 polievka je takd, ze kdekolvek naberiem,
bude nejaky rezanec.

Husté prednaska je takd, ze kamkolvek pozriem
je nejaké tvrdenie, ktorému nerozumiem.
Terescak - pri definicii hustej mnoziny

10 Banachov a Hilbertov priestor
Linedrny normovany priestor, Banachov priestor, Hilbertov priestor. Linedrne spojité operd-
tory a funkciondly. Veta o reprezentdcii linedrneho ohraniceného funkciondlu v Hilbertovom
priestore.

Linearny normovany priestor

Definicia 1. Lineéarny priestor X s funkciou ||-]|: X — R spliiajticou
() el 20, o] =0 & 2 =0,
(i) [IAz (] = [A[]ll,

(ii) [l +yll < llz] + [lyll
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nazyvame linedrny normovany priestor.

Definicia 2 (Hamelova baza). Nech X je linedrny priestor. Potom linedrne nezavisla
mnozinu H C X nazyvame bdzou v X, ak [H] = X (linedrny obal H je celé X).

Veta 1. KaZdy netrividlny linedrny priestor md Hamelovu bdzu. Lubovolné dve bdzy maji
rovnakid kardinalitu. Kardinalita lubovolnej bdzy sa nazgva dimenzia linedrneho priestoru.

Veta 2 (Hahn-Banach). Nech X je linedrny priestor, K uzavretd konvexnd mnoZina, Ag
je afinng podpriestor, nepretinajici K. Potom existuje nadrovina A obsahujica Ag nepreti-
najuca K.

Tvrdenie 1. Nech X je linedrny priestor al: X — R linedrny funkcional. Potom nasledujice
podmienky su ekvivalentné.

(i) 1 je spojity,

(i) ¥r >0 3ec > 0 |l(z)| < ¢ Vz € B(0,r),
(iir) 3C >0 [i(x) = I(y)| < Clle —yll,

(i) z, — 0= l(z,) — 0,

(v) z, =z = l(x,) — l(x).

Tvrdenie 2. Nech X je linedrny normovany priestor. Potom ak ly, lo su spojité linedrne
funkciondly, tak aj l1 + lo a A1 st spojité linedrne funkciondly. Teda mmnoZina vsetkych li-
nedrnych spojitych funkciondlov na X oznacovand ako X* a nazyvand dual X je linedrny

priestor s normou ||| = sup |l(z)|. X* s touto normou je Banachov priestor.
z€B(0,1)

Veta 3 (Hahn-Banach). Nech X je linedrny normovany priestor, Y je jeho linedrny pod-
priestor a ly: Y — R linedrny a na 'Y spojity funkciondl s normou na Y oznacenou ||lo]|.
Potom ezistuje L € X* taky, Ze Ly =1lo a ||L|| = ||lo]|-

Tvrdenie 3. Nech X je linedrny normovany priestor. Potom zobrazenie x: X x X* — R
definované ako x(v,l) = l(v) je bilinedrne a plati |x(v,1)| < ||l|||v], pre l € X*, v € X. Dalej
zobrazenie i: X — X** definované ako i(v) := x(v,-) je linedrne injektivne a zachovdvagice
normu, t.j. |v| = ||i(v)||.

Tvrdenie 4. Nech X je linedrny normovany priestor a l je linedrny funkciondl na X. Potom
| je spojity prdve vtedy, ked 1=1(0) je uzavretd mnoZina. 0 # | je nespojity prave vtedy, ked
uzdver 171(0) je X.

Definicia 3. Nech X je linedrny normovany priestor. Potom hovorime, Ze postupnost x,,
konverguje slabo k x (a znaéime x,, — x), ak pre kazdy | € X* plati l(x,,) — I(x) pre
m — oo. Hovorime, ze postupnost konverguje silne, ak konverguje k x v norme.

Definicia 4. Nech X je linedrny normovany priestor a i: X — X** kanonické vloZenie. Ak
i je bijekcia, hovorime, ze X je reflexivny priestor.

X je reflexivny prave vtedy, ked z kazdej postupnosti ohranicenej v norme sa dé vybrat
slabo konvergentna podpostupnost. (Eberlejn-Smuljan)

Désledok 1. Nech X # {0} je linedrny priestor av € X. Potom ezistujel € X*; l(v) = ||v]|,
1 = 1.
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Tvrdenie 5 (Baire). Nech (M,d) je dplng metricky priestor a Gy, i € N je systém otvore-
o0

nych a hustych podmnoZin v M. Potom (| G; je husty v M.
i=1

1=

Veta 4 (Banach-Steinhaus - princip rovnomernej ohranienosti). Nech X, Y si
linedrne normované priestory a A, je postupnost A, € L(X,Y), n € N. Potom bud {z €
X: sup||Anzx| = oo} je prienik spocitatelného systému otvorengch a hustych podmnoZin X
alebo ezistuje C > 0 také, Ze ||An|| < C pre vietky n € N.

Tvrdenie 6. Nech X je Banachov priestor a l, € X*, n € N. Ak {l,,(z);n € N} je ohrani-
cend pre vietky x € X, potom existuje C > 0 také, Ze ||l,]| < C Vn € N.

Tvrdenie 7. Nech A je linedrne zobrazenie z linearneho priestoru X do'Y, potom nasledovné
podmienky siu ekvivalentné

(i) A je spojité,
(ii) existuje B(xzg,r0), na ktorej je A ohranicdené,
(i) 3C > 0: ||Az|| < C, z € B1(0),
(iv) 3C >0 : || Az — Ay|ly < C|lz — yl/x,
(v) x, — 0= Az, — 0,
(vi) xp, — v = Az, — Ax.

Tvrdenie 8. Nech X, Y su linedrne normované priestory a 'Y je Banachov priestor. Potom
L(X,Y) je Banachov priestor.

Tvrdenie 9 (von Neumann). Nech X je Banachov priestor. Potom ak A € L(X,X) a

|AllLx,x) < 1, tak existuje inverzny operdtor B € L(X, X) k operdtoru I—A a || B|| < 1_ﬁA”,

Priklady Banachovych priestorov:
BC(X,R) - ohraniéené funkcie z X do R so suprémovou normou (ak X je kompakt, si to
vietky spojité funkcie)

1

Ly - llelly = (Jyla(ldt)” (1< p < o0)
Lo - ||2]lco = esssup{|z(t) : t € J|} = inf{B : |z(t)| < B skoro vSade na intervale I'} (Lo je
mnozina tych funkeii, pre ktoré je mnozina vystupujica v definicii ||-||oo neprazdna, a teda
existuje esencidlne suprémum.)
by - llzly = (ol lail?)» (1< p < o0)
loo - ohraniené postupnosti, ||z||c = sup{|z;|: ¢ € N}
Holderove priestory, Sobolevove priestory

Porovnanie kone¢norozmernych a nekonecnorozmernych Banachovych priestorov:
V koneénorozmernych priestoroch st vSetky normy ekvivalentné. Jednotkova gula v X je
kompaktné prave vtedy, ked X je konecénorozmerny. Slabé a silnd konvergencia st v konec-
norozmere ekvivalentné.
Konecénorozmerny linearny podpriestor linedrneho normovaného priestoru je vzdy uzavrety.

Hilbertov priestor

Definicia 5. Nech X je linedrny priestor. Potom zobrazeniu (-,-): X x X — R hovorime
skaldrny sucin na X, ak plati
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(i) (z,2) =0 2 =0, (z,x) >0,
(ii) (o + By, z) = oz, 2) + By, 2),
(iti) (z,y) = (v, @)

a priestoru X so skaldrnym stéinom (-,-) hovorime predhilbertov priestor (priestor so skalar-
nym stéinom).

Definicia 6. Ak je linearny normovany priestor s metrikou odvodenou od normy tplny met-
ricky priestor, tak ho nazyvame Banachovym priestorom. Ak priestor so skaldrnym sic¢inom
s metrikou odvodenou od skaldrneho sti¢inu je uplny metricky priestor, tak hovorime, ze je
to Hilbertov priestor.

Tvrdenie 10. Nech X je predhilbertov priestor. Potom +/(z,x) je norma na X.
Tvrdenie 11. Nech X je predhilbertov priestor. Potom |(z,y)| < ||z||.|ly]| pre z,y € X.
Tvrdenie 12. Nech X je predhilbertov priestor. Potom ||z + y|| < ||=| + [|y]]

Predchéadzajtce tvrdenie hovori, Ze norma odvodena od skaldrneho st¢inu splita trojuhol-
nikov nerovnost, teda Ze je skuto¢ne normou.

Definicia 7. Nech X je predhilbertov priestor. Potom piSeme x Ly, ak (z,y) = 0. Pre M C X
piseme x 1 M, ak plati z Ly pre vSetky y € M.

Tvrdenie 13 (Rovnobeznikové pravidlo). Nech X je predhilbertov priestor. Potom plati
2 +ylI? + llz = ylI> = 2([|=[1* + ly]|*)-

Tvrdenie 14. Nech X je Hilbertov priestor, v € X a K je konvernd a uzavretd podmnozina
X. Potom ezistuje jeding xo € K taky, Ze ||x — xo|| = dist(z, K).

Tvrdenie 15. Nech X je Hilbertov priestor, Y je afinng uzavrety podpriestor a x € X.
Potom ezistuje y € Y taky, Ze ||y — || = dist(z,Y) a plati (x —y)L(y —Y)

Tvrdenie 16. Nech X je Hilbertov priestor, Y uzavrety linedrny podpriestor. Potom existuji
linedrne zobrazenia P,Q € L(X, X) také, Ze:

(i) P(X)=Y,Q(X)=Y",
(i) |z* = [Pz|* + |Qz|?,
(iii)) P2 =P, Q%= Q.

Veta 5 (Rieszova veta o reprezentacii). Nech X je Hilbertov priestor. Potom pre kaZdy
l € X* existuje jediné y € X takeé, Ze l(x) = (y,z) pre vietky x € X.

Daosledok 2. Hilbertov priestor je reflexivny.

Definicia 8. Nech X je predhilbertov priestor. Potom systém vektorov {uy, A € A} (A # 0)
nazyvame ortogondlny, ak (uy,,uy,) = 0 pre vSetky A\; # Ay € A. Ortogondlny systém
{ux, A € A} nazyvame ortonormdlny, ak navyse ||ux|| = 1 pre vetky A € A.

Tvrdenie 17. Nech X je Hilbertov priestor (predhilbertov priestor) a {ui,...,u,} je orto-
n

normdlny systém v X. Potom plati ||z||* > > (z,u;)?.
i=1
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Definicia 9. Nech ¢y, A € A st nezdporné. > ¢y = sup Y. ca.

AEA JCA XeJ
#J<oco

Tvrdenie 18 (Besselova nerovnost). Nech X je predhilbertov priestor a {ux,\ € A} je
ortonormdlny systém v X. Potom ||z]|®> > Y (z,uy)?
AEA

Veta 6 (Riesz-Fischer). Nech X je Hilbertov priestor, {u;;i € I} je ortonormdlny systém
v X a{c; € Ryi € I} je mnoZina redlnych cisel. Ak Y, ; c? < oo, potom ezistuje v € X
taky, Ze (x,u;) = ¢; pre vietky i € I.

Definicia 10. Nech X je predhilbertov priestor a {u;;i € I} ortonormdlny (ortogonélny)
systém. Hovorime, Ze tento systém je dplng (tplny ortonormalny (ortogonalny) systém), ak
je maximalny (tzn. neexistuje u # 0 taky, ze u_lu; pre vetky i € I).

Tvrdenie 19. Nech X je Hilbertov priestor a {u;;i € I} je ortonormdlny systém. Potom
nasledujice podmienky su ekvivalentne:

(i) {uisi € I} je dplng,
(i1) linedrny obal {u;;i € I} je husty v X,
(iii) Vo € X ||z[* = 3 (2, u:)?,

iel
(iv) Yo,y € X (z,y) = X (#,ui) (y, i)
iel
Definicia 11. Ortonormélny systém v Hilbertovom priestore sa nazyva ortonormdlna bdza
priestoru, ak je uplny.

Tvrdenie 20. Nech X # 0 je Hilbertov priestor. Potom existuje ortonormdlna bdza (teda
dplng ortonormdlny systém) tohto priestoru.

Priklady Hilbertovych priestorov: Sobolevov priestor W3, La({(a,b)), la.
Par poznamok
Rovnobeznikové pravidlo mozno obratif v tom zmysle, Ze ak ho nejaka norma splia, tak

je odvodend od skaldrneho sucinu. Ak chceme ukézat, Ze nejakd norma nie je odvodend od
skalarneho stéinu, moze pomoct toto kritérium ([SSN, tloha 8.1.1]):

Tvrdenie 21. V priestore so skalarnym sicinom plati |x + y|| = ||z|| + ||y]| = = = ay.

Ak u,,n € N je spoc¢itatelnd ortonormdlna béza, tak pre kazdé xz € X plati z =

[e.e]

> (2, up)up. (Linedrny obal je husty v X, preto v flom existuje postupnost konvergujica k
n=0

prvku z. Potom sa d& vyuZit veta 25 z otézky 4.)

Kazdy nekonecnorozmerny separabilny realny Hilbertov priestor je izomorfny s lo. (V X
existuje spoCitatelna ortonormdlna baza. x — ((z,u;)):en. Na surjektivnost staci overit, Ze
pre a € ls > a;u; konverguje, ¢o vyplyva z Gplnosti.) Dokonca plati, ze Hilbertov priestor je
jednoznac¢ne uréeny kardinalitou svojej ortonormaélnej bazy (pozri [TAY]).

Situacia je velice, velice jednoducha.
Terescak
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11 Topologické priestory

Topologické priestory. Otvorené a uzavreté mnoZiny, okolia, husté mnoZiny a pod. Spojité
zobrazenia, homeomorfné zobrazenia, otvorené a uzavreté zobrazenia. Spojity obraz kompakt-
nych a suvislych mnozin.

Definicia 1. Systém podmnozin mnoziny X 7 C P(X) sa nazyva topoldgia na X, ak
(i) 0, X eT,

(i) AjeTpreiel = |JA €T,
i€l

(ii) A, BeT = ANBeT.
Dvojicu (X, 7) nazyvame topologicky priestor ak T je topoldgia na X.

Priklady topologickych priestorov:

(X,{0,X}) - indiskrétny topologicky priestor

(X,P(X)) - diskrétny topologicky priestor

(X,7),kde T ={U C X : X\ U je kone¢na} - kofinitna topoldgia
Kazdy metricky priestor urcuje topoldgiu.

Definicia 2. Mnoziny patriace do 7 nazyvame otvorené a ich doplnky uzavreté mnoZiny.
Tvrdenie 1.

(i) O a X st uzavreté,

(i) prienik lubovolného systému uzavretych mnoZin je uzavretd mnoZina,
(iii) zjednotenie koneéného poctu uzavretych mnoZin je uzavretd mnozina.

Definicia 3. Nech X je topologicky priestor, A C X. A=nN{F : AC F, F je uzavretd v X}
sa nazyva uzdver mnoziny A v X.

Tvrdenie 2.

(i) A je uzavretd & A = A,

(ii) 0 =0,
(iii) A C A,
(iv) A=A,

(v) AUB=AUB.

Definicia 4. Ak (X,7) je topologicky priestor a Y C X, tak 7" = {GNY : G € T} je
topoldgia na Y a nazyva sa relativnou topoldgiou indukovanou na Y topolégiou 7. (Y, 77)
sa nazyva topologicky podpriestor priestoru X.

Definicia 5. Nech X je topologicky priestor a x € V' C X. V sa nazyva okolie bodu x, ak
existuje otvorend mnozina U takd, ze x €¢ U C V.

Veta 1. 2 € A & kazdé okolie bodu x md neprdzdny prienik s A (pretina mnoZinu A).
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11.1 Typy bodov a mnoZin v topologickych priestoroch

Definicia 6. Bod p topologického priestoru X sa nazyva izolovany bod priestoru X, ak
mnozina {p} je otvorend v X. Bod p € A C X je izolovany bod mnoziny A, ak je izolovany
v topologickom podpriestore A priestoru X.

Definicia 7. Bod p € X je hromadny bod mnoziny A C X, ak lubovolné okolie bodu p
obsahuje bod mnoziny A rozny od p. Mnozina vSetkych hromadnych bodov mnoziny A sa
oznacuje D(A) a nazyva sa derivdcia mnoZiny A.

Tvrdenie 3. Nech X je topologicky priestor a A C X. Potom plati:
(i) A= AU D(A),

(i1) mnoZina A je uzavretd prdve vtedy, ked D(A) C A (A obsahuje véetky svoje hromadné
body.)

Definicia 8. Nech (X, T) je topologicky priestor, A C X. Potom mnozina Int A = U{G: G C

A,G € T} sa nazyva vnitro mnoziny A a mnozina H(A) = AN (X \ A) hranica mnoziny A.
Prvky mnoziny Int A nazyvame vnitorné body a prvky mnoziny H(A) nazyvame hranicné
body mnoziny A.

Tvrdenie 4. (i) A je otvorend < A =1Int A,
(ii) A CInt AU H(A),
(i11) ak A je uzavreté, tak A =1Int AU H(A).
(iv) ntA=X\X\A
(v) A=Int AU H(A)
Definicia 9. Mnozina A C X sa nazyva hustd (v X), ak A = X.

Tvrdenie 5. MnoZina A C X je hustd v X prdve vtedy, ked kazdd neprdzdna mnoZina G
otvorend v X md neprdzdny prienik s mnoZinou A.

Definicia 10. Mnozina A C X sa nazyva perfektnd, ak A = D(A).
Veta 2. Mnozina A C X je perfektnd prdve vtedy, ked A je uzavretd a nemd izolované body.
Definicia 11. Mnozina A C X sa nazyva riedka (v priestore X), ak Int A = ().

Veta 3. MnoZina A C X je riedka v X prdve vtedy, ked kaZdd neprdzdna mnozina G C X
obsahuje taku neprdzdnu otvorentd podmnoZinu H C G, Ze HN A = 0.

11.2 Baza topoldgie, baza okoli

Definicia 12. Nech (X,7T) je topologicky priestor. Systém mnozin B C 7 sa nazyva bdza
topoldgie T, ak kazda mnozina z 7 je zjednotenim mnozin z B.

Tvrdenie 6. Nutnd a postacujica podmienka na to, aby B C P(X) bola baza nejakej topo-
logie na X su:

(i) U A=X,

AeB
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(i) ak A,B € B a p € AN B, tak ezistuje takd mnoZina V€ B, Zep e V C AN B.

Definicia 13. Topologicky priestor (X,7) sa nazyva priestor so spoéitatelnou bdzou, ak
existuje spocitatelna baza B pre topolégiu 7. Hovorime potom, ze X splia druhi azidmu
spocitatelnosti.

Definicia 14. Topologicky priestor X sa nazyva separabilng, ak v X existuje hustd spoci-
tatelnd podmnozina.

Tvrdenie 7. Ak X je priestor so spoéitatelnou bdzou, tak X je separabilny.
Pre metrické priestory plati aj obratend implikécia.

Definicia 15. Hovorime, Ze systém S C 7 je subbdza topoldgie 7, ak systém pozostévajici
zo vsetkych konecnych prienikov mnozin z S tvori bazu topoldgie 7 .

Definicia 16. Nech X je topologicky priestor a p € X. Mnozina B okoli bodu p sa nazyva
bdza okoli bodu p, ak p € B pre vSetky B € B a pre kazdé okolie V' bodu p existuje mnozina
B e B taka, ze BC V.

Definicia 17. Ak (X;,7;), i € I su topologické priestory, tak (][ X;,7), kde 7 je ur¢end
subbazou S = {p; ' (U;): U; € T.,i € I} (p; oznatujeme projekcie z kartezianskeho stcinu
[1X; na mnozinu X;) sa nazyva topologicky sicin topologickych priestorov (X;,7;), i € I.
(Teda béza topoldgie topologického stcinu obsahuje mnoziny tvaru [[..; Vi, pricom V; € T;
pre vietky i € I a V = X pre vetky i € I az na koneény pocet.)

icl

11.3 Zobrazenia topologickych priestorov

Definicia 18. Nech (X,7) a (Y,S) su topologické priestory a f: X — Y je zobrazenie.
Hovorime, ze f je

(i) spojité, ak pre kazd otvorentt mnozinu U C Y je jej vzor f~1(U) otvorena v X,
(ii) homeomorfizmus, ak f je bijekcia a f aj f~! st spojité,
(iii) wzavreté, ak obraz kazdej uzavretej mnoziny je uzavreta,
iv)

(iv) otvorené , ak obraz kazdej otvorenej mnoziny je otvorena.

Tvrdenie 8. Nech X a Y su topologické priestory, f: X — Y je zobrazenie. Nasledujice
podmienky su ekvivalentné:

(i) [ je spojité,
(i) vzor kaZdej uzavretej mnoZiny v zobrazeni f je uzavretd mnoZina,

(iii) pre kaZdi podmnozinu A C X plati f(A) C f(A).

Tvrdenie 9. Ak X aY su topologicke priestory a f: X — Y je bijekcia, tak su ekvivalentné
podmienky:

(i) f je homeomorfizmus,
(i) f je spojité a otvorené,

(iii) f je spojité a uzavreté.
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11.4 Snvisly topologicky priestor

Definicia 19. Topologicky priestor X sa nazyva suvisly, ak nie je zjednotenim svojich dvoch
neprazdnych uzavretych disjunktnych podmnozin.

Veta 4. Ak f: (X,7T) — (Y,S) je spojité, surjektivne a (X,T) je suvisly, tak aj (Y,S) je
suvisly. (Spojity obraz sivislého topologického priestoru je suvisly.)

11.5 Kompaktny topologicky priestor

Definicia 20. Topologicky priestor X sa nazyva kompaktny, ak kazdé jeho otvorené pokrytie
obsahuje kone¢né podpokrytie.

Definicia 21. Hovorime, Ze systém mnozin je centrovany, ak kazdy jeho koneény podsystém
ma neprazdny prienik.

Tvrdenie 10. Topologicky priestor X je kompaktny prdve vtedy, ked kaZdy centrovany sys-
tém uzavretych mnoZin md neprazdny prienik.

Tvrdenie 11. Uzavretd podmnoZina kompaktného topologického priestoru je kompakind.
Tvrdenie 12. Kompaktny podpriestor hausdorffovského priestoru je uzavrety.
Veta 5. Spojity obraz kompaktného topologického priestoru je kompaktny.
Veta 6 (Tichonovova). Ak X, v € T si kompaktné topologické priestory, tak ich topolo-
gicky sucin [[ X, je kompaktny.
~el’
Ked ¢lovek nemé,
hladé, ¢o je na zemi.
Medved - hladajuci kriedu

12 Linearne diferencialne rovnice a ich systémy

Linedrna diferencidlna rovnica n-tého rddu a linedrne diferencidlne systémy. Struktira mno-
Zin riesent, rovnice a systémy s konstantnymi koeficientami.

12.1 Linearne diferencialne rovnice prvého radu

Definicia 1. Nech D C R x R" je oblast a f: D — R". Obycajnd diferencidlna rovnica

1.rddu v D je rovnica tvaru ‘fl—f = f(t,z). Ak x = (x1,...,2n) a f = (f1,..., fn), tak je
ekvivalentna systému rovnic dﬁi = fi(t,x).

Nech zobrazenie f: D — R"™ je spojité. Riesenie diferencidlnej rovnice %f = p(t)z na

intervale I C R je také spojité diferencovatelné zobrazenie ¢: I — R", ze
(i) (to(t) € DVEET,
o d
(i) 52 = /(¢ (1))

Linedrna homogénna diferencidlna rovnica 1.raddu je rovnica tvaru

Ccll—? = p(t)z, (12.1)

p: (a,b) — R je spojita funkcia, a,b € RT.
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Veta 1. Pre kazdé tg € (a,b) a kazdé xg € R md zaciatocnd uloha

e
a7 (12.2)
.’13(15()) = X9
prdve jedno riesenie x: (a,b) — R
x(t) = el P . (12.3)
KaZzdé rieSenie x(t) rovnice (12.1) md tvar
() = el PO o (12.4)
kde C € R je konstanta.
Linearna nehomogénna diferenciilna rovnica 1.rddu v R je rovnica tvaru
dz
W=ty + 1) (125)
kde p, f: (a,b) — R st spojité funkcia a f(t) £ 0.
Veta 2. Pre kaZdé tg € (a,b) a kaZdé o9 € R md zaciatoénd iloha
dz
==t t
W e+ 1) 126)
x(to) = X0
prdve jedno rieSenie
"t "t t T
z(t) = zoelto PO 4 lig PL)ds / e o p(s)dsf(T)dT. (12.7)
to

Kazdé riesenie x(t) diferencidlnej rovnice (12.5) md tvar x(t) = xp(t) + z,(t), kde x,(t) =
e O
eleo P()ds f:o e~ o p(s)dsf(T)dT je tzv. partikuldrne riesenie diferencidlnej rovnice (12.6) a
t
zp(t) = Celo P94 je vSeobecné riesenie homogénnej diferencidlnej rovnice.

Bernoulliho rovnica je rovnica tvaru o’ = p(t)x + f(t)a”, ktort riesime prevedenim do

tvaru ="z’ — p(t)z'~" = f(t) a substittciou y = 1.

12.2 Linearne diferencialne systémy
¢ize linearne diferencidlne rovnice v R™. Najprv nieco o homogénnych

T =A(t)x (12.8)
Veta 3. Mnozina rieSent (12.8) tvori n-rozmerny vektorovy priestor nad R.

Definicia 2. Kazd4d mnozina @1, ..., ¢, linedrne nezavislych rieSeni (12.8) sa nazyva funda-
mentdlny systém rieSeni. ®(t) = (¢1(t)...¢n(t)) sa nazyva fundamentalna matica systému
(12.8) (riesenia ¢, ..., @, tvoria jej stipce). Ak ®(0) = I,,, potom ®(t) sa nazyva normdina
fundamentdlna matica.
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Lema 1. &(t) = A(t)®(t) Vt € I, ¢ize fundamentdlna matica je maticové riesenie (12.8).

Veta 4. Maticové rieSenie ®(t) rovnice (12.8) je fundamentdina matica tejto rovnice <
det ®(t) A0 Vt € I.

Definicia 3. R(t,s) = ®(t)®(s)~! je rezolventa (12.8).
Veta 5. Zaciatocénd uloha
x(t) = A(t)x(t) (12.9)
z(to) = zo
ma riesenie tvaru x(t) = R(t,t0)xo.
Nehomogénny linedrny systém: & = A(t)z + f(1).

Veta 6. Ak ®(t) je fundamentdlna matica homogénnej diferencidlnej rovnice & = A(t)z,
potom x(t) = R(t,to)xo + ftto R(t,s)f(s)ds je rieSenie zaciatoénej ulohy © = A(t)x + f(t),
x(tg) = xg.

Dékaz. Metédou varidcie konstant, t.j. rieSenie hfadame v tvare z(t) = ®(¢)c(¢).
@(t) = ®(t)c(t) + D(t)e(t) = A(t)D(t)c(t) + B(t)e(t)

A(t)z(t) + f(t) = A(H)@(t)e(t) + f(2)

K uréime z rovnosti xg = x(ty) = ®(to)K = K = & 1(tg)o.

2(#) :@(t)¢—1(t0)xo+/ B(1)D~(s) f(s)ds

to

z(t) = R(t,to)xo —|—/t R(t,s)f(s)ds
O

Lema 2 (Liouvilleova formula). Ak ®(t) je maticové riesenie diferencidlnej rovnice & =
A(t)x, potom pre kaZdé to € R plati det (t) = det q)(tg).efto Tr A(s)ds

Dosledok 1. Ak det ®(tg) # 0 pre nejaké tg € R, tak det ®(t) # 0 pre vsetky t € R.

48



12.3 Linearne diferenciilne rovnice n-tého radu

Oznacéme

d"u d" 1y du
Lnu = ao(t)W + al(t)W + ...+ an_l(t)a + an(t)u, (1210)
kde ag, ..., an, f: R — R s spojité.

Linedrnou diferencidlnou rovnicou n-tého rddu nazyvame rovnicu
Lyu=f. (12.11)

Ak f(t) =0, tak je to homogénna diferencidlna rovnica n-tého radu.

Ak f(t) £ 0, je to nehomogénna diferencidlna rovnica n-tého radu.

Ak ap(7) = 0 pre nejaké 7 € R, je to singuldrna diferencidlna rovnica n-tého radu.

Ak ap(t) # 0, tak je to reguldrna diferencidlna rovnica n-tého radu.

My sa budeme zaoberaf len reguldrnymi. V tom pripade je mozné predpokladat, Ze ag(t) =
1 (rovnicu méZzeme predelit).

Pomocou substittcii v = z1,u = xa,...,u"Y = z,, ju mdéZeme previest na systém
diferencialnych rovnic prvého radu.
Ak ¢1,..., @, st rieSenia homogénnej rovnice, tak
pr(t) o en(t)
W(pr,...,n) =det : - :
-1 -1
AT el
je wronskidn (Wronského determinant) rieSeni @1, ..., @p.
Veta 7. Riesenia ¢1,...,9, homogénnej diferencidlnej rovnice Ly u = 0 s linedrne nezd-

vislé prdve vtedy, ked W (1, ..., pr) # 0 pre vietky t € R.

Definicia 4. Mnozina linedrne nezavislych rieseni ¢4, .. ., ¢, diferencidlnej rovnice L, u = 0
sa nazyva fundamentdlny systém rieSeni tejto diferencialnej rovnice.

Veta 8. Ak ¢1,...,0, je fundamentdlny systém rieseni diferencidlnej rovnice Lyu = 0,
potom kaZdé jej riesenie p(t) md tvar p(t) = c1p1(t) + ... + cnon(t), kde c1,...,cn €R.

Veta 9. Nech p1,...,p, je fundamentdlny systém rieseni homogénnej diferencidlnej rovnice
Lou = u™ 4+ a;(H)u™ Y + ...+ a,(t) = 0. Potom riesenie 1)(t) Cauchyho tlohy Lyu =
f(#),u1(to) = ug, ..., u™ Y (tg) = up_1 md tvar

_ - CWi(pn - pn)(8)
80 =) + o) || E P s,

kde 1y, (t) je riesenim homogénnej zaciatoénej Cauchyho ilohy a

e1(s) o we—1(8) 0 wrya(s) 0 pal(s)

ei(s) o @a(s) 0 @i(s) e @h(s)
Wi(o1,. .., pn) = det : :

") o) 1 ol (s e el (s)
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12.4 Metdda variacie konstant

Loy = § + a1(t)y + az2(t)y = f(t)

y(to) = yo, 9(to) = 11 (12.12)

Nech z1(t), x2(t) je fundamentdlny systém rieSeni homogénnej diferencidlnej rovnice
Loy = 0. Hladdme rieSenie (12.12) v tvare

y(t) = c1(t)z1(t) + ca(t)x2(?)

Dostaneme §(t) = ¢121 + oo+ 181 + Codo. Zvolime ¢1x1 + éaxe = 0 a mame y = ¢1d1 + oo,
1§ = c1%1 + cado + 6121 + é222. Vyuzitim toho, Zze x1, x5 s rieSenia homogénnej rovnice
dostaneme Loy = ¢1x1 + éoxy = f. Ststavu

e ()1 () + éa(D)za(t) = 0
C1(t)a1(t) + éa(t)ao(t) = f()

mozeme riesit Cramerovym pravidlom, a dostaneme

a0 = Wiar ey 0 (f(t) sbz(t))

. _ e 1 (t) 0
20 = e O (@(t) f(t))
al)=a+ | VVV[/l((;?;;))((;)) f(s)ds
ca(t) = s + Wz(xl’xg)(s)f(s)ds

y(t) = cr(t)za(t) + c2(t)z2(t) =
o1 () + anma(t) + 11 () [ DAELT) bl /t Walwy, 22)5) 4

Ak n > 2, postup je analogicky:

él (t)l‘l(t) + ...+ cn(t)xn(t) =0

)T ot (D)
)TN o ()

ne
n
ne
n
12.5 Linearne diferencidlne rovnice n-tého radu s konstantnymi koeficientami

Homogénna diferencidlna rovnica radu n s konstantnymi koeficientami je rovnica tvaru

Lou=u"™ +au™V+. . +a, ¢ +a,u=0 (12.13)
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Definicia 5. Polyném P(\) = A" + A\"~1 + ... + a,_ 1\ + a, sa nazyva charakteristicky
polynom diferencidlnej rovnice (12.13).

(1) (n)
Lema 3. Ly(eu(t)) = eM [P(A)(t) + Eo QoM (k) + . 4 ZoX 00 )

1! n

Veta 10. Ak A1, Aa,..., As st navzdjom rozne korene charakteristického polyndmu P(X\) =
AT+ AL 4 a1\ + a, diferencidlnej rovnice (12.18) a ndsobnost koreria \; je my,
potom fundamentdlny systém rieSeni (vo vSeobecnosti komplexnych) diferencidlnej rovnice
(12.13) je eMt tert . tmTleMt rat qerat o yma—ledat gy oAst qeslt o gme—leAst

12.6 Systémy linearnych diferencialnych rovnic s konstantnymi koeficientami

Veta 11. Nech Aq,..., A\, st vlastné ¢isla matice A (vo vSeobecnosti komplezné) a v1,...,vn
st 1m zodpovedajice vlastné vektory, pricom predpokladame, Ze su linedrne nezdvislé. Potom
Mty ... ety st linedrne nezdvislé riesenia diferencidlnej rovnice @ = Ax (CiZe tvoria
fundamentdlny systém).

Veta 12. Nech A = 0 + iw, w # 0 je komplexny k-ndsobny koren charakteristickej rovnice
P()\) = det(M — A) = 0, pricom k nemu existuje k linedrne nezdavislyjch vlastngch vektorov
& = g1+ih, ..., & = gp+ihg. Potom mnoZina vietkijch riedend tvaru (a cos wt—+bsin wt)e®,
a,b € R" tvori 2k-rozmerny vektorovy priestor Vay, (podpriestor mnoZiny vsetkjch rieSent).
Jeho bdzu tvoria riesenia:

up (t) = [g1 coswt — hy sinwt]e””

ug(t) = [gr coswt — hy, sin wt]e

v1(t) = [hy coswt + gy sinwt]e”"

vi(t) = [hy coswt + gy sinwt]e

Retazec zovseobecnenych vlastnych vektorov prislichajicich k vlastnému ¢islu A matice A
rozumieme vy, va, . . ., Uy, ak spliiaji (A—A)v; =0, (A—X)vy = vy, ..., (A= A)vp = vp_1.

Veta 13. Nech vy, v, ...,v,, je retazec zovseobecnenych vlastnijch vektorov matice A prishi-
chajuci vlastnej hodnote \. Potom

y2(t) = (v2 + vlt)e)‘t

. 1 1 m—1 At
ym(t) = (’Um+ ﬁvm_1t+...+mvlt ) &

st linedrne nezdvislé rieSenia diferencidlnej rovnice & = Az (nad C).

Matematika je hra. Ak sa hrate, robite dobre. Ak sa trapite, nema to zmysel.
Medved
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13 Picardova existen¢éna veta

Picardova existencénd veta.

= f(t,x)

w(te) = o (13.1)

Veta 1 (o existencii a jednoznaénosti). Nech D C RxR" je oblast, f: D — R", (¢, x) —
f(t, ) je spojité zobrazenie splriajice Lipschitzovu podmienku vzhladom na premennii x (t.j.
existuje L > 0 také, Ze || f(t,z1) — f(t,x2)|| < L||x1 — z2||, ||-|| je euklidovskd norma). Potom
pre kaZdé (to, o) € D existuje otvoreny interval I C R taky, Ze to € I a na I existuje prdve
jedno riesenie dlohy (13.1).

Tvrdenie 1. Funkcia x je riesenim (13.1) prdve vtedy, ked x sphia rovnicu

z(t) = o +/t F(t,z(t))dt (13.2)

Na prednaske sa robilo viac dokazov vety 1, jeden na zaklade Banachovej vety o pevnom
bode, druhy pomocou Picardovych aproximéacii:

a:l(t) = X0

t (13.3)
Susa(t) =0+ [ f(s,0(s))ds
to
Postupnost Picardovych aproximécii je vlastne postupnost, ktord vystupuje v dokaze Bana-
chovej vety o pevnom bode, ktora konverguje k pevnému bodu. V nasom pripade to znamena,
7e tato postupnost rovnomerne konverguje k rieSeniu diferencidlnej rovnice (13.1). Treti dokaz
bol pomocou Eulerovych polygénov, ktoré sa potom vyuzili aj v dokaze Peanovej vety.

Definicia 1. Nech f: D — R" je spojité zobrazenie a ¢ > 0. Spojité zobrazenie z: [ — R"
(I C R jeinterval) sa nazyva e-priblizné riesenie diferencidlnej rovnice & = f(¢, z) na intervale
I ak

(i) (t,z(t)) € D pre vSetky t € I,
(ii) existuje koneénd mnozina S C I takd, Ze x je spojito diferencovatelnd na I\ S a pre

kazdé s € S existuju 1irn+ d’;—(tt), lim d;fi—(tt), (teda d’;—(tt) je po Castiach spojitd na I,)
t—s t—s—

(i) |90 — f(¢,2(1))| < e pre vietky t € I\ S.

Lema 1 (Gronwallova). Nech (3: (tg,00) — R, ¢: (tg,00) — R st spojité nezdporné
funkcie a o > 0 je konstanta. Nech

o) <at / B(s)p(s)ds

pre vsetky t > tg. Potom
p(t) < aelto P)#(s)ds

Lema 2. Nech G = (tg —a,to+a) x {x € R"|||lx — x| < b} a f: G — R" je spojité
zobrazenie. Potom pre kaZdé ¢ > 0 existuje e-priblizné riesenie x(t) diferencidlnej rovnice
(13.1) na intervale I, = (to,to + ), kde a = min(a, %), M = (m)axGHf(t,x)H.

ta)€

)
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e-priblizné riesenia z predchadzajicej lemy sa konstruuju ako Eulerove polygdny, teda po
Castiach linedrne funkcie, ktorych smernica v ,bodoch zlomu“ sa zvoli prave f(t,z). Ukaze
sa pomocou rovnomernej konvergencie f, Ze ak zvolime deliace body dostato¢ne husto, do-
staneme e-priblizné rieSenie.

Lema 3. Nech @1 je e1-pribliZné riesenie a o je eo-priblizné rieSenie rovnice (13.1) na
intervale I, = (to,to + ) také, Ze ||p1(to) — p2(to)|| < 9, 6 > 0 a nech f je lipschitzovskd s
konstantou L. Potom ||p1(t) — p2(t)|| < (0 + ea)e*r pret € I,. (e =1 +¢e2)

Veta 2 (Peanova veta o existencii). Nech D C R x R" je oblast a f: D — R", (t,z) —
f(t,x) je spojité zobrazenie. Potom pre kaZdy bod (to,xo) € D existuje otvoreny interval
I CR, kde ty € I, na ktorom je definované riesenie ¢: I — R" zaciatocnej ulohy (13.1).

Téato veta sa dokazovala tak, Zze pre Eulerove polygdny (resp. pre postupnost e-pribliznych
rieSeni) sa overila rovnhomocnd spojitost a rovnomerné ohranicenost a z Arzeli-Ascoliho lemy
potom vyplynulo, Ze sa d4 vybrat (v C(I,R")) konvergentnd podpostupnost.

Veta 3 (o predlzitelnosti na interval I = (—00,00)). Nech f: R x R" — R" je spojité
zobrazenie spliiajice podmienku

£t 2)|| < w(llz]]) V(t,z) € R xR,
kde w: (0,00) — je spojitd, w(u) > 0 pre u > 0, pricom

. " ds
lim —— =400, 19>0.
r—00 o w(s)
Potom pre kaZdé (to,z9) € R x R" existuje riesenie p: (—o0,00) — R" zaciatocénej ulohy
(13.1).

Clovek nema skiisat vsetko, ¢o prednasa
a nemal by prednasat vsetko, ¢o vie.
Medved

14 Klasifikacia linearnych parcialnych diferencialnych rovnic

Klasifikdacia linedarnych parcidlnych diferencidlnych rovnic 2. rddu.

Definicia 1. Pod parcidlnou diferencidlnou rovnicou rozumieme funkcionalnu rovnicu, v kto-
rej vystupuje neznama funkcia u:  C R” — R a ktord mé vo vSeobecnosti tvar

F(zy,...,zn,u, D100)gy DO0sd)yy D%u) = 0.

Riesenie je funkcia, ktora ma spojité derivacie, ktoré v rovnici vystupuja, a spliia tito rovnicu.
RA4d parcialnej diferencialnej rovnice je maximalna dizka multiindexu.

Druhy podmienok:
zadiato¢né (Cauchyho)
okrajové - mozZe byt zadany predpis pre funkciu (Dirichletove) alebo jej derivaciu v smere
normdly (Neumannove) na okraji danej oblasti, pripadne ich kombin4cia.

Z rovnic prvého rddu sme sa zaoberali linedrnymi (> a;(z)u;(z) + b(z)u(z) = f(z)) a
kvézilinedrnymi (> a;(x, u(x))u;(z) = b(z, u(x))).

Homogénne linedrne parcidlne diferenciélne rovnice 1.rddu > fi (:c)(%‘k = 0 (fy st spojité
a nie st v ziadnom z € Q stcasne nulové) sme riesili pomocou charakteristického systému

‘%’“ = fr(z1,...,2,). RieSenia charakteristického systému sa nazyvaju charakteristiky.
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Veta 1. ¥ € CY(Q,R) je riesenie S fi(z) 2%
ristike.

5er = 0 U je konstantné na kazdej charakte-

Vsetky rieSenia mozeme ziskat pomocou fundamentalneho systému rieSeni ¥y, ..., ¥, 1,
ktoré st nezavislé. Ak mame jedno riesenie, toto riesenie je vhodné ako substitiicia na znizenie
poctu premennych.

Aj kvéziline4drne rovnice sa rieSia pomocou charakteristik.

ou
ka TlyeenyTny )3:17k g(x1,. .. T, 0) (14.1)

K uvedenej kvézilinarnej rovnici priradime linedrnu rovnicu

0z
x,u) z,u)— =0 14.2
Z i ( +g(z,u) 5 (14.2)

Charakteristicky systém kvéazilinedrnej rovnice (14.1) je charakteristicky systém (14.2)
ako linedrnej homogénnej parcialnej diferencialnej rovnice.

Veta 2. Nech fi,g € C(2 x R,R), x € CY(Q,R). Nech ¥(z,u) € C*(2 x R, R) je riesenie
linedrnej rovnice (14.2). Nech

(i) ¥V C Q3 e Q : TL(E, x(£) #0 (v kaZdej podoblasti),
(i) ¥(z,x(x)) = const.

Potom x je riesenie (14.1).

Linearne parcialne diferencialne rovnice 2.radu: Uvazujme linearnu parcidlnu diferencialnu
rovnicu v tvare a11Uzy + 2a12Ugy + 22Uy + F(2, 2,4, ug, u,) = 0. Jej diskriminant A =
a2, — aj1ase nemeni znamienko pri fubovolnej transformécii nezavisle premennych. Rovnicu
nazveme hyperbolickou ak A > 0, parabolickou ak A = 0 a eliptickou ak A < 0.

Kanonicky tvar pre hyperbolickt rovnicu je ug, + Fi(ue, uy, u,§, ) = 0. Kanonicky tvar
pre parabolicktl rovnicu je uee + Fi(ue, up, u, &, n) = 0. Kanonicky tvar pre eliptickd rovnicu
je uge + upy + Fi(ug, uy,u, &, m) = 0.

Transformécie & = ¢(z,v), n = ¢¥(z,y), ktoré preveda uvedent diferencidlnu rovnicu na
kanonicky tvar hladdme pomocou rovnic angax + 2012020y +a22<py =0, a11w2 + 20129y +
aggd)z = 0, ktoré riesime metdédou charakteristik. V zavislosti od typu rovnice dostaneme
dve rieSenia (hyperbolickd), jedno rieSenie, ktoré doplnime Iubovolnou nezavislou funkciou
(parabolickd) alebo dve komplexné rieSenia, ktorych redlnu a imagindrnu cast zvolime za
pouzité transformécie (elipticka).

Pre parcialne rovnice 2.radu viac premennych ur¢ime typ rovnice na zaklade vlastnych
¢isel matice urcenej koeficientmi, ak maji rovnaké znamienko, ide o eliptickd rovnicu (kvad-
ratickd forma dand touto maticou urcuje elipsu/elipsoid), ak st nenulové a nemaji rovnaké
znamienka, ide o hyperbolicki rovnicu (hyperbola) a ak je jedno nulové a ostatné maji
rovnaké znamienka, ide o parabolick rovnicu.

Parcialne diferencidlne rovnice st modelmi réznych fyzikalnych javov. Parabolické rovnice
st naprlklad rovnica pre vedenie tepla div(kVu)+ f(t, ) = pus (k(z) > 0, p(z) > 0) a rovnica
spojitosti Bt + div(p@) = 0. Rovnica pre prie¢ne kmitanie struny us = a?u., je prikladom
hyperbolickej rovnice.

Volovi je vSetko jasné.
Vencko
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15 Cauchyho tloha

Cauchyho tloha pre vinovi rovnicu (D’Alembertov vzorec), jednoznacnost rieSenia.

Najprv sme preberali dokazy jednoznacnosti pre zaciatoéno-okrajové ulohy (pre vsetky
tri typy rovnic), potom princip maxima pre parabolické a eliptické rovnice, z ktorych tiez
vyplyva jednoznac¢nost rieSenia tychto tloh. Otézka sa tyka (asi) iba jednozna¢nosti Cauchyho
ulohy, v jej dokaze sa vyuziva princip maxima pre parabolické rovnice, tak som sem dal aj
ten.

15.1 Princip maxima a minima pre parabolické rovnice

Q2 C R" - ohraniCend oblast, T' > 0,
Qr={recQ;0<t<T}

Uvazujme rovnicu:

div(kVu) = pug, z € Q,t € (0,7) (15.1)

k(z) > 0,p(z) >0 )
Veta 1 (o maxime a minime). KaZdé riesenie rovnice (15.1) u € C(Qr,R) nadobida
najuicsiv a nagmensiv hodnotu na dolnej hranici Qr (t = 0) alebo na pldsti valca P = {x €
oN,0<t<T}.

Fyzikalny vyznam principu maxima a minima je v tom, Ze teplo sa §iri z miesta s vyssou
teplotou na miesta s nizSou teplotou a teploty sa pritom vyrovnavaja. (Pri tepelnej vymene
s okolim sa moze maximum dosahovat na okraji v ¢ase ¢ > 0.)

Désledok 1 (princip porovnévania rieseni). Nech ui,us € C(Q,R) st riefenia rovnice
div(kVu)+ f(t,x) = pu, ui(t, ) < ug(t,x) pre (t,z) € T = {x € 9Q,t > 0}U{z € Q,t =0}.

Potom uy(t,x) < ug(t,x) pre (t,z) € Q.

Désledok 2 (spojita zavislost na zadiatoénych a okrajovych podmienkach - veta
o stabilite). Nech si dané dve Dirichletove zmiesané dlohy: div(kVu) + f(t,x) = puy,
U‘F = 7/11,2(15796); u(O,x) = (pl,?(x) a |901(x) - @2(1'” <e |w1(t7x) - 1/’2(75,96” <et >0,

x € 9Q. Potom |uy(t,z) —ua(t,z)| < e pre (t,z) € Q.

Désledok 3. div(kVu) + f(t,x) = put, ulp = ¥(t,z), u(0,2) = @(x) md najviac jedno
riesenie.

15.2 Princip maxima a minima pre eliptické rovnice

Veta 2. Nech Q C R" je ohranicend oblast, nech u € C(Q,R) je harmonickd funkcia. Potom
u dosahuje mazimum aj minimum na OS).

Dosledkom st jednoznacnost riesenia Dirichletovej tilohy, spojita zavislost riesenia, po-
rovnavaci princip a to, Ze ak postupnost harmonickych funkcii rovnomerne konverguje na
hranici ohranicenej oblasti, potom rovnomerne konverguje v celej oblasti a limita je harmo-
nicka funkcia.

15.3 Jednoznaénost rieSenia Cauchyho tlohy

Pri Cauchyho tlohe ide o neohraniéent oblast, v nasom pripade R".
Pre parabolicku tlohu:
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a’Au+ f(t,x) = u
u(0,z) = p(x)

Veta 3. Riesenie Cauchyho dlohy (15.2) uw € C((0,00) x R"™,R), ktoré je navyse ohranicené,
je urcéen€ jednoznacne.

(15.2)

Vraj sa to d4 dokézat aj bez tej ohranic¢enosti.
Pre hyperbolickt tlohu:

Au = utt;t > O,I € R"
u(0,z) = f(z),z € R" (15.3)
ut(0,2) = g(x),x € R"

Definicia 1. Charakteristicky kuZel k rovnici (15.3) je Z,(z9) = {(t,z) e RxR": 0 < t <
r, || — o] < r—t}.

Lema 1. Ak u € C%(Z,.(0),R) je riesenie (15.8) s nulovymi pociatocnymi podmienkami, tak
je nulové na celom charakteristickom kuZeli.

Veta 4. Cauchyho uloha pre rovnicu (15.3) md na zjednoteni vietkych charakteristickijch
kuzelov s podstavou v Q) najviac jedno riesenie.

15.4 Existencia rieSenia Cauchyho ulohy pre hyperbolickil rovnicu ak n =1

Rovnica
0%u 5 0%u
28
ot2 0x?
t>0,z € (—00,00)

u(0,2) = 1), 51(0,) = g(a)

ma riesenie

u(t,x) =

flx+at)+ f(x —at) 1 [*+ot
2 * 2& x/a:—at
Uvedeny vzorec (d’Alembertova formula) udéva klasické rieSenie v pripade, Ze g je raz a
f dvakrat spojite diferencovatelné, vzdy vSak udéva rieSenie v zmysle distribucii.
Na prednaske sme mali aj vzorce pre n = 2,3, bez odvodenia.
TODO Treba sem dat aj Greenovu funkciu?

15.5 Jednoznaénost rieSenia zadiatoéno-okrajovych tiloh

V dalsom budeme ¢asto pouzivat vztah

/L(v)wdx:f/ k(x)Vu.Vvdxf/qvwder/ kwa—gds, (*)
Q Q Q so  Om

ktory sa d& odvodit napriklad v takto: Ak v (Arseninovi) zndmom vzorci div(pE ) =pdivE+
E.Vp polozime p = w a E = kVuv, tak méme [, L(v)w = [, div(kVu)w — [, quuda =
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Jo div(kVow) — [, kVoVw — [, quwdz a teraz uz staéi pouzit vetu o divergencii. (Na pred-
naske sme to bolo pomocou per partes, je to v podstate ten isty postup. Takto je to v [ARS].)

Ked sme dokazovali jednoznac¢nost rieSenia pre rozne typy rovnic, vzdy sme postupovali
tak, ze sme predpokladali existenciu dvoch rieSeni u; # us nehomogénnej rovnice s Tubovol-
nymi zaciatoénymi a okrajovymi podmienkami a ich odé¢itanim sme ziskali nenulové riesenie
v = u; — uz homogénnej rovnice s nulovymi pociatoénymi a okrajovymi podmienkami. O
tomto riedeni potom ukdZeme, Ze musi byt nulové. Zaoberali sme sa klasickymi rieSeniami,
teda sme predpokladali, Ze rieSenia st funkcie spojite diferencovatelné na Q tolkokrat, aky je
rad rovnice.

Hyperbolické

2u
L(u) = div(k(z)Vu) — q(z)u + f(t,x) = p(x)g? (15.4)
N@) D p(ulon = gltz). 20 (15.5)
u(0,z) = p(x) ut (0, ) = () r€EN (15.6)

Veta 5. Zaciatocno-okrajovd tloha (15.4)-(15.6) md jediné riesenie u € CY(B,R) (B =
{(e.t)ya e .t > 0)).

Mame v, pre ktoré plati L(v) = p(z)vi. Z toho dostaneme

/p(x)vttvtdx:/l)(v)vtdz@/ kvta—gds—/ kVUVvtdx—/qvvtdx
Q Q o0 on Q Q

/p(x)vttvtder/ va(Vv)tder/qvvtdz:/ kvta—ﬁds
Q Q Q oo 0N

1 9, 4 0 9 9, 5 / v
= e Z(w Lwdr = | kvie—d
Q/Qpat(vt)Jrat< v) + ag (v)de oo tom
V pripade Dirichletovej tlohy (y; = 0, 72 = 1) a Neumannovej tlohy (y; = 1, 72 = 0)
je ¢len na pravej strane 0. Celd rovnost zintegrujeme podla t od 0 po T, zamenime poradie
integrovania a vyuzijeme tiez to, Ze v¢(0,z) = v(0,2) = Vv(0,z) = 0. Dostaneme

/ pv2(T, x)dx Jr/ E(Vv)(T, x)dx Jr/ qu*(T, x)dx =0
Q Q Q
Pretoze o funkcii k predpokladdame k(x) > 0, dostaneme Vv = 0. Sti¢asne vieme, Ze na hranici
00 je v = 0, preto musi platif v = 0 vSade.

V pripade Newtonovej podmienky plati %\39 = —%vkm, pricom sme predpokladali,
ze 1,72 > 0, preto na pravej strane dostaneme — |, 20 k‘vt%vvtds a po zintegrovani cez T
2

11)2 (T, z)ds, teda opéit modZzeme pouzit

dostaneme na pravej strane zaporné ¢islo — |, 20 kvt7—

ten isty argument.
Parabolické rovnice
Teraz sa venujeme rovnici tvaru L(u)+ f (¢, ) = p(x)u; pricom mame len jednu zaciatoéni

podmienku u(0,z) = @(x). Opit prevedieme dokaz jednozna¢nosti na dokaz, Ze rieSenie
homogénnej rovnice s homogénnymi podmienkami je nulové.
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Pre v plati L(v) = p(x)v;. Tentokrat polozime w(x) = v(x) a dostaneme

/pvtvdm:/L(v)vdx:—/k(Vv)de—/QUQda:—&-/ kva—gds
Q Q Q Q o On

V pripade Dirichletovej alebo Neumannovej podmienky je posledny ¢len nulovy. Dostaneme,
ze %(UQ) je skoro vSade rovné 0, zo spojitosti potom aj celkom vSade a tym mame, Ze v = 0.

V pripade Newtonovej tlohy budeme pouzijeme podobny trik ako minule.
Eliptické

Zaoberame sa rovnicou L(u) = f(x) na okraji plati 4 () g—%—kw (x)uloa = g(z), zaciatoéné
podmienky pochopitelne nie si.
Mame L(v) = 0 a zintegrovanim tejto rovnosti cez {0 dostaneme

/ k(Vv)2dz +/ quidx — kva—gdaz.
Q Q oo On
V pripade Dirichletovej podmienky je posledny ¢len 0, preto v = 0. V pripade Newtonovej
podmienky rovnakym postupom ako pri predchadzajiucich dvoch typoch rovnic dostaneme
¢len, v ktorom bude vystupovat nezaporny nasobok v2.

Pri Neumannovej podmienke takisto v pripade ¢ # 0 dostaneme jednoznac¢nost. V pripade
q = 0 (¢o je pripad Laplaceovej rovnice) dostaneme Vv = 0 na 2, pre je v konstantné. To
znamena, ze v tomto pripade je rieSenie urcené jednoznacne az na konstantu.

(Neviem, to len tak mimochodom, nemali by sme to rozdelit na dva pripady ¢ =0a ¢ # 0
aj pre Newtonovu podmienku?)

Do kelu! Vy mi ni¢ nepoviete.
Durikovié

16 Fourierova metéda

Fourierova metdda pre hyperbolické, parabolické a eliptické zmiesané a okrajové dlohy (vinovd
rovnica, rovnica pre vedenie tepla, Laplaceova rovnica.

16.1 Fourierova metdda - rovnice hyperbolického a parabolického typu

2u
L(u) = div(k(z)Vu) — q(z)u = p(m)g? (16.1)
vl(w)% +72(2)uloe = 0 (16.2)
u(0,x) = p(x) ut (0, ) = p1(x) reQ (16.3)

Pricom: k(x) > 0, g(z) > 0, p(x) > 0, vietky tieto funkcie st spojité. v; a v2 s spojité na
89) Y1572 > 0 a’Y% +Pyg > 0.
A={f:(Q2CR") — R; f je spojité na 2, méa po ¢astiach spojitt 1. a 2. derivaciu na Q a
spliia (16.2)}.

Hladdme rieSenie uvedenej rovnice v tvare u(t,z) = T (¢)®(x).

L@, .1

pT(ﬂf) T (t) ==\
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L(D) + \pd =0 (16.4)
T + AT =0 (16.5)
0P (x
1@ 2 4 @)2(@) acan = 0 (16.6)
(16.4), (16.6) - Sturm-Liouvillova tloha
Tato loha m4 spocitatelntt mnozinu vlastnych ¢isel A, a im zodpovedajtce vlastné fun-

kcie ®,, tvoria Gplna ortonormdlnu bézu priestoru Lo () s vdhou p(x), teda kazda funkciu
o0

z L2(Q) mozno rozvinit do Fourierovho radu f(z) = Y ¢,®,(z) a ¢, = %%
Q N n

(MozZno nie je celkom spravny, ale je tu aspoil pokus o n;jaké zdovodnenie. L: A — Ly (Q) je
samoadjungovany operator a L~! je kompaktny. Dalej vyuZijeme to, Zze funkcia a funkcia k
nej inverzna maja rovnaké vlastné funkcie.)
(16.5) ma rieSenie T}, (t) = Cy, cos(v/Ant) + Dy, sin(v/Ant). RieSenie (16.1)—(16.3) bude po-
0 . n
tom n21 ®(x)T,(t) a konstanty, ktoré tu vystupuji mozno vyratat ako C,, = %%,

D, = [o@e1@n @)z
n T VAT (@)@ @)

o0
V parabolickom pripade dostaneme riesenie > C,e **®, (z) a C,
n=1

T p(2)®2 (z)dz

16.2 Nehomogénne ulohy

L(u) + f(t, ) = div(k(z)Vu) — q(z)u + f(t,2) = p(x)ur (p(2)u) (16.7)
() e 4 (el = 0 (16.8)
u(0,2) =0 = u (0, z) (16.9)

Riesenie opit hladdme v tvare u(t,z) = Y. C,h(t)®,(x). Ak f(t";) = > fo(®)®n(2)
n=1

(rozvoj do Fourierovho radu), tak mame:

en() LB (@) + pl@) Fu(DPa(2) = plx) 3 (1) (@)
> = Anen(t) + falt) = ()] @lx) =0

Potom vsetky koeficienty musia byt 0:
Cn(t) + Ancn(t) = fu(t)  (cu(t) + Ancn(t) = fn(t))
cn(0)=¢,(0)=0
Takto dostaneme riesenie (16.7), (16.8), (16.9).

L(u) + f(t,2) = div(k(z)Vu) = g(z)u + f(t,2) = p(e)ue (p(x)u) (16.10)
71(33)% +72(7)ulog =0 (16.11)
u(0,x) = () ut(0, ) = ¢1(x) r€eq (16.12)
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Riegenie tejto tlohy hladame ako stcet riesenia homogénnej tilohy, ktoré splia dané po-
¢iatocné podmienky a nehomogénnej tlohy s nulovymi pociatoénymi podmienkami.

Ak st nehomogénne aj okrajové podmienky, tak hladdme rieSenie v tvare suctu rieSenia
pre nehomogénnu rovnicu s homogénnymi podmienkami a riesenia homogénnej rovnice s
nehomogénnymi podmienkami, ktoré treba uhadnut. (Ak st podmienky v tvare fi(z).f2(t),
mozno ho hladat tiez separdciou.) Niekedy mozno najst rieSenie tejto rovnice, ktoré nezavisi
od casu - ide o ustaleny stav daného systému.

16.3 Laplaceova tiloha

Pri tlohach eliptického typu treba pouzit transforméciu (polérne, sférické, cylindrické
suradnice), a potom sa d4 pouzit Fourierova metéda.
Polérne stradnice: Vu = 22 (ru,) + Hug,.

s , , . . . . 2
Sférické suradnice: = rsingsing, y = sinpcosf, z = rcosp = Vu = 2% 4 29u 4

2 or? r Or
cotg ¢ du 1 o%u (9
2 Op + r2sin2 p 902 (>
9%u

. . 7 7 . . _ _ . _ _ 1 6 1
Cylindrické stradnice: x = rcosg, y =rsing, z = 2 = Vu = - 5-(1u,) + 73Uy, G550

Riesenie Laplaceovej tllohy na kruhu

Tato tlohu moézeme riesit Fourierovou metddou. Ak do rovnice Vu = 0 vyjadrenej v
polarnych stradniciach dosadime u(r, @) = F(r)¥(p), dostaneme po tprave

rF'(r) +r2F"(r) B (o)

F(r) ()

Najprv riesime rovnicu ¥”(¢) + A¥(¢) = 0 s podmienkou ¥(p) = ¥(p + 27). Tato rovnica
mé riefenie tvaru ¥(yp) = acos v Ap + bsin v Ap a musi platit VA = n, A = n?. Mame teda
rieSenia ¥, (p) = A, cosny + B, sinngp.

Dalej dostaneme rovnicu r2F”(r) + rF'(r) = n>F(r). RieSenie hladdme v tvare r®. Do-
staneme dve rieSenia r™ a 1. Pretoie rieSenie, ktoré hladame, je v 0 ohrani¢ené (to vieme z
vlastnosti harmonickych funkcii), tak pouzijeme iba 7.

Vysledok je v tvare u(r,¢) = > o, (Axsinky + By cos kp)rk. Koeficienty mozno uréit

=A

pomocou okrajovej podmienky u(R,¢) = f(¢) ako 5 0% %gp B, =1 027r f("a)lg%]wdgo a
in k
A= L o
Dalsimi ipravami sa tento tvar rieSenia dal upravit na Poissonov vzorec:
)1 T (RP—r?)f(t)dt Ak si cheet . ¢ of ieho odvoden
u(r,8) 5= of R 73R coni—7) - K si cheete pre zaujimavost pozrief jeho odvodenie pomocou

komplexnej analyzy, mozete ho najst v [CA].
Jednoznacnost riesenia Laplaceovej tilohy je v predchadzajice]j otazke.

Uz ste mali vetu o spektralnom poromele?
Feckan
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