
Tu bude kadečo, čo síce nepatrí do textu, ktorý by mal obsahovať len základ učiva, ale
predsa len to bolo hodné (alebo aj nehodné) zapísania. Napríklad by tu mohli byť aj opravy
nesprávnych viet a dôkazov uvedených v skriptách.

2 Diferencovateľnosť

Cauchyho vetu v podielovom tvare môžeme získať z tvaru (f(b) − f(a))g′(c) = (g(b) −
g(a))f ′(c) jednoducho v prípade, že derivácie sú konečné. Ak nadobúda nekonečnú hodnotu
vždy len jedna z nich, stále nie je problém, lebo v takomto bode by platilo ∞ =konečná
hodnota, čiže takýto bod nie je bodom c vystupujúcim vo vete. Ak nadobúdajú obe súčasne
nekonečnú hodnotu, stále môžeme analýzou znamienok vylúčiť ten prípad, kedy by sme
dostali v takomto bode rovnosť +∞ = −∞. Zostáva teda jediný prípad, kedy nemôžeme z
tejto formulácie Cauchyho vety odvodiť tú, v ktorej vystupuje podiel. Problém je vlastne v
tom, že nevieme, čomu sa rovná podiel ∞/∞.
Nasleduje kontrapríklad, ktorý ukazuje, že v takomto prípade veta neplatí. (Napríklad vo

Venckových skriptách je však uvedené znenie, ktoré pripúšťa nekonečné derivácie a nehovorí
nič o tom, že by nemali byť nekonečné súčasne, ak som to len náhodou neprehliadol.) Označme
f(x) = h−1(x), kde h(x) = x3 (čiže f je inverzná funkcia k x3). Označme g(x) = f(x) +
χ〈0, 1

23
〉. Uvažujme funkcie f a g na intervale 〈a, b〉, kde a = − 1

23 a b = 1
23 . Platí f(a) =

g(a) = − 12 , f(b) = 1
2 a g(b) = 1. (Keď sa na to po čase pozerám, tak neviem, prečo som zvolil

práve takéto hranice, ale čert ich ber.) Platí g(b)−g(a)
f(b)−f(a) =

3
2 , ale

f ′(c)
g′(c) = 1 pre c < 0 a f ′(c)

g′(c) = 2

pre c > 0. V bode nula ide o podiel ∞/∞. (Vidíme, že platnosť vety možno ľahko zachrániť,
ak dodefinujeme ∞/∞ = 3/2;-)
Veľký význam to však asi nemá, určite sme používali túto vetu len pre funkcie s konečnými

deriváciami.

5 Riemannov integrál

Iný dôkaz druhej vety o strednej hodnote integrálneho počtu:

Dôkaz. ∫ b

a

f(x)g(x)dx
?
= f(a)

∫ c

a

g(x)dx + f(b)

∫ b

c

g(x)dx

Označme A :=
∫ c

a
g(x)dx, B :=

∫ b

c
g(x)dx. Máme:

∫ b

a

f(x)g(x)dx = Af(a) +Bf(b)

∫ b

a

g(x)dx = A+B

Odtiaľ vyjadríme A =
∫

b

a
(f(x)−f(b))g(x)

f(a)−f(b) . (Prípad f(a) = f(b) treba vyšetriť zvlášť, ale ten je

jednoduchý.) My potrebujeme ukázať, že existuje také t ∈ 〈a, b〉, že G(t) =
∫ t

a
g(x)dx = A.

Ak f je nerastúca, tak 0 ≤ f(x) − f(b) ≤ f(a) − f(b), a teda G(a) ≤ A ≤ G(b). Zo
spojitosti funkcie G (jedna z viet, ktoré sme brali pri Riemannovom integrále) máme potom
existenciu t takého, že G(t) = A.
Pre neklesajúcu funkciu stačí zobrať −f .

Podľa dôkazu sa zdá, že by stačilo f(b) ≤ f(x) ≤ f(a), čo je slabšia podmienka ako
monotónnosť.
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10 Banachov a Hilbertov priestor

Hamelova báza

Dôkaz vety, ktorá hovorí, že ľubovoľné dve Hamelove bázy majú rovnakú kardinalitu sme
robili na prednáške na dvakrát a dosť chaoticky, tak som sem dal jednoduchý dôkaz z [NS,
cvičenie 4.7.7]. Je tu uvedený len nekonečnorozmerný prípad.

Dôkaz. Nech B1, B2 sú dve Hamelove bázy priestoru X . Pre každé x ∈ B1 nech B2(x) je
jednoznačne určená konečná množina bodov bázy B2, ktorých lineárnou kombináciou je x.
Najprv ukážeme, že pre každé y ∈ B2 existuje také x ∈ B1, že y ∈ B2(x).
Nech by to tak nebolo, teda y ∈ B2(x) pre žiadne x. Potom B1 ⊆ [B2 \ {y}] ([V ] označuje

lineárny obal množiny V ⊆ X). Keďže B1 je báza, tak potom [B2 \ {y}] = X , a teda y je
lineárna kombinácia prvkov z B2 \ {y}. Ukázali sme, že B2 nie je lineárne nezávislá, čo je
spor s predpokladom, že je to Hamelova báza.
Máme teda ukázané (∀y ∈ B2)(∃x ∈ B1)y ∈ B2(x). Platí potom B2 =

⋃
x∈B1

B2(x). Pre

kardinality dostávame cardB2 = card (
⋃

x∈B1

B2(x)) ≤ cardB1.ℵ0 = cardB1 (v poslednej

rovnosti sme využili, že cardB1 je nekonečná.) Rovnakým spôsobom ako cardB2 ≤ cardB1
môžeme ukázať nerovnosť cardB1 ≤ cardB2. Z týchto dvoch nerovností (podľa Cantor-
Bernsteinovej vety) dostaneme cardB2 = cardB1.

Von Neumannova veta

Pekný dôkaz von Neumannovej vety, vraj to vymyslel nejaký študent a voľajako sa to
dostalo aj ku mne:

Dôkaz. Z predpokladov vety vyplýva, že f(x) = Ax+ y je kontraktívne zobrazenie. Z Bana-
chovej vety o pevnom bode potom vyplýva, že existuje (pre ľubovoľné y) jediné x také, že
x = Ax+ y, t.j. (I − A)x = y.
Máme teda existenciu inverzného zobrazenia k I−A, zostáva overiť jeho spojitosť a odhad

pre normu: x = Ax + y ⇒ ‖x‖ ≤ ‖Ax‖ + ‖y‖ ≤ ‖A‖‖x‖ + ‖y‖ ⇒ ‖x‖(1 − ‖A‖) ≤ ‖y‖ ⇒
‖x‖ ≤ ‖y‖

1−‖A‖

Rovnobežníkové pravidlo

Obrátenie rovnobežníkového pravidla

Dôkaz. Ukážeme, že (x, y) = ‖x+y‖2−‖x−y‖2
4 je skalárny súčin. Vlastnosti (x, x) = 0⇔ x = 0 a

(x, y) = (y, x) sú zrejmé. Treba teda už len ukázať (x+y, z) = (x, z)+(y, z) a (αx, y) = α(x, y).

(x+y, z) =
‖x+ y + z‖2 − ‖x+ y − z‖2

4
=

‖x+ y + z‖2 + ‖z‖2 − (‖x+ y − z‖2 + ‖z2‖)
4

=

‖x+ y + 2z‖2 + ‖x+ y‖2 − (‖x+ y − 2z‖2 + ‖x+ y‖2)
8

=
‖x+ y + 2z‖2 − ‖x+ y − 2z‖2

8
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(x, z) + (y, z) =
‖x+ z‖2 + ‖y + z‖2 − (‖x − z‖2 + ‖y − z‖2)

4
=

‖x+ y + 2z‖2 + ‖x − y‖2 − (‖x+ y − 2z‖2 + ‖x − y‖2)
8

=
‖x+ y + 2z‖2 − ‖x+ y − 2z‖2

8

Tým máme (x+ y, z) = (x, z) + (y, z). Tiež platí (x,−y) = (−x, y) = −(x, y). Na základe
toho ľahko indukciou ukážeme (nx, y) = n(x, y) pre n ∈ Z. Jednoducho sa to rozšíri aj na
racionálne čísla: q(p

q
x, y) = (px, y) = p(x, y) ⇒ (p

q
x, y) = p

q
(x, y). Z racionálnych čísel na

reálne to môžeme rozšíriť limitným prechodom. (Norma je spojité zobrazenie.)

15 Cauchyho úloha

Jednoznačnosť riešenia Cauchyho úlohy pre vlnovú rovnicu

Je to podobný dôkaz ako na prednáške, ale snažil som sa ho písať jednoduchšie. Preto to
aj dokazujem len v jednorozmere, a potom sa pokúsim naznačiť, ako by to šlo vo viacrozmere.
(Samozrejme, mohol by som to písať celé v n-rozmere, ale to by sme sa iba zbytočne ubili.)
K takémuto druhu dôkazov sa zvykne kresliť aj obrázok. Tak si ho nakreslite.

Dôkaz. Základná myšlienka dôkazu je presne rovnaká ako na prednáške – budeme sa snažiť
dokázať, že vo vrchole každého charakteristického kužeľa je u nulové.

Zr je v jednorozmernom prípade trojuholník. Parametrizácie jeho dvoch strán, na ktorých
u môže byť nenulové, sú
(t, x) = (τ, r − τ), τ ∈ 〈0, r〉 (úsečka u1),
(t, x) = (τ, τ − r), τ ∈ 〈0, r〉 (úsečka u2).
Vyjadríme deriváciu zúženia u na tieto úsečky podľa parametra τ . Pre f(τ) = u(τ, r − τ) a
g(τ) = u(τ, τ −r) máme f ′(τ) = ut(τ, r−τ)−ux(τ, r−τ) a g′(τ) = ut(τ, τ −r)+ux(τ, τ −r).
Nás zaujíma hodnota u vo vrchole Zr, čiže u(r, 0).
u(r, 0) = f(r) =

∫ r

0 f ′(τ)dτ =
∫ r

0 ut(τ, r − τ)− ux(τ, r − τ)dτ

u(r, 0) = g(r) =
∫ r

0 g′(τ)dτ =
∫ r

0 ut(τ, τ − r) + ux(τ, τ − r)dτ

Jednotkový vektor vonkajšej normály je ν1 =
1√
2
(1, 1) na úsečke u1 a ν2 =

1√
2
(1,−1) na

úsečke u2. Ak položíme w(t, x) = (ut,−ux), tak vidíme, že u(r, 0) =
√
2

∫
u1

w.~ν1 =
√
2

∫
u2

w.~ν2.

Keďže na podstave je w = 0, tak 2u(r, 0) =
√
2

∫
∂Zr

w.~nds. Môžeme použiť vetu o divergencii

a dostaneme
√
2u(0, r) =

∫
Zr

divwdS =
∫

Zr

(utt − uxx)dS = 0.

Myslím, že analogicky by to išlo aj vo viacrozmere. (Je predsa neprirodzené, aby to tam
neplatilo, keď to v jednorozmere platí.) Postupoval by som asi takto:
Teraz uvažujeme (t, x) ∈ R

+×R
n. Každá povrchová úsečka kužeľa Zr je určená nejakým

bodom z okraja podstavy (ktorý je (n − 1)-rozmerná guľa) x0. Nech ~u0 =
x0

‖x0‖ . Tentokrát

zvolíme takúto parametrizáciu:
(x, t) = (r − (r − τ)n, ~u0(r − τ)n)
f(τ) = u(r − (r − τ)n, ~u0(r − τ)n)
f ′(τ) = n(r − τ)n−1(ut − ~u0. gradu)

u(r, 0) =
r∫
0

n(r − τ)n−1(ut − ~u0. gradu)dτ

Keď uvedenú rovnosť zintegrujeme cez všetky ~u0, ktoré prebiehajú (n − 1)-rozmernú guľu,
dostaneme
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Ku(r, 0) =
∫

∂Zr

(ut − ~u0 gradu)dS,

lebo (r − τ)n−1dSn−1dτ nám dá (až na konštantu) dS. (To by sa malo dať overiť pomocou
parametrizácie kužeľa. A toto je práve dôvod, prečo sme museli zvoliť takúto parametrizáciu
povrchovej úsečky, ak sme chceli nakoniec dostať plošný integrál po kuželi.) Teraz je w =
(ut,− gradu). (Pri podrobnom dôkaze by bolo ešte treba zistiť jednotkový vektor vonkajšej
normály, nám však stačí, keď z obrázku vidíme, že to bude (1, ~u0) po predelení jeho normou.)
Pomocou vety o divergencii dostaneme objemový integrál z divw = utt − △u (resp. jeho
násobok).
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