Tu bude kadeco, ¢o sice nepatri do textu, ktory by mal obsahovat len zéklad udiva, ale
predsa len to bolo hodné (alebo aj nehodné) zapisania. Napriklad by tu mohli byt aj opravy
nespravnych viet a dékazov uvedenych v skriptach.

2 Diferencovatelnost

Cauchyho vetu v podielovom tvare mozeme ziskat z tvaru (f(b) — f(a))g’(c) = (g(b) —
g(a))f'(c) jednoducho v pripade, Ze derivécie si koneéné. Ak nadobtuda nekone¢ntt hodnotu
vZzdy len jedna z nich, stile nie je problém, lebo v takomto bode by platilo co =konecna
hodnota, ¢ize takyto bod nie je bodom ¢ vystupujicim vo vete. Ak nadobiidaji obe st¢asne
nekoneént hodnotu, stdle modZeme analyzou znamienok vylacit ten pripad, kedy by sme
dostali v takomto bode rovnost +00 = —oco. Zostdva teda jediny pripad, kedy nemozeme z
tejto formuldcie Cauchyho vety odvodit t1, v ktorej vystupuje podiel. Problém je vlastne v
tom, Ze nevieme, ¢omu sa rovnd podiel oco/oco.

Nasleduje kontrapriklad, ktory ukazuje, ze v takomto pripade veta neplati. (Napriklad vo
Venckovych skriptach je vSak uvedené znenie, ktoré pripista nekone¢né derivacie a nehovori
ni¢ o tom, ze by nemali byt nekoneéné sicasne, ak som to len ndhodou neprehliadol.) Oznaéme
f(x) = h=1(x), kde h(xz) = a3 (Cize f je inverzna funkcia k z3). Ozna¢me g(z) = f(z) +

X0, &)+ Uvaqume funkcie f a g na intervale (a,b), kde a = 72% ab= 2% Plati f(a) =
g(a) = —1, f(b) = 3 a g(b) = 1. (Ked sa na to po ase pozeré,m tak neviem, preco som zvolil
prave takéto hranice, ale Gert ich ber.) Plati % , ale :gf; =1lprec<0a 8 =2

pre ¢ > 0. V bode nula ide o podiel co/oc. (Vidime, ze platnost vety moZno lahko za,chramt,
ak dodefinujeme co/co = 3/2;-)

Velky vyznam to vSak asi nemaé, uréite sme pouzivali tiito vetu len pre funkcie s koneénymi
derivaciami.

5 Riemannov integral

Iny dékaz druhej vety o strednej hodnote integralneho poctu:

/ab f(@)g(@)dz = f(a) /: g(z)dx + f(b) /cbg(x)dx

Ozna¢me A := [ g(z)dx, B := fb g(z)dz. Mame:

Dokaz.

/ f(2)g(x)dx = Af(a) + BF (D)
/ g(x)dz — A+ B

b
Odtial vyjadrime A = %#. (Pripad f(a) = f(b) treba Vyéetrit’ zv14st, ale ten je

jednoduchy.) My potrebujeme ukézat, ze existuje také ¢t € (a,b), ze G(t f g(x)dx = A.
Ak f je nerasttica, tak 0 < f(z) — f(b) < f(a) — f(b), a teda G( )< A § G(b). Z
spojitosti funkcie G (jedna z viet, ktoré sme brali pri Riemannovom integrale) mame potom

existenciu ¢ takého, ze G(t) = A.
Pre neklesajicu funkciu sta¢i zobrat — f. O

Podla dokazu sa zda, ze by stacilo f(b) < f(z) < f(a), ¢o je slabsia podmienka ako
monoténnost.



10 Banachov a Hilbertov priestor
Hamelova baza

Dokaz vety, ktora hovori, Ze lubovolné dve Hamelove bdzy maji rovnaki kardinalitu sme
robili na prednaske na dvakrat a dost chaoticky, tak som sem dal jednoduchy dokaz z [NS,
cvicenie 4.7.7]. Je tu uvedeny len nekone¢norozmerny pripad.

Doékaz. Nech Bj, Bs st dve Hamelove bazy priestoru X. Pre kazdé « € B; nech By(z) je
jednoznacne urcena kone¢na mnozina bodov bazy Bs, ktorych linedrnou kombinaciou je x.
Najprv ukdzeme, ze pre kazdé y € By existuje také © € By, 7e y € Ba(z).

Nech by to tak nebolo, teda y € Ba(x) pre ziadne . Potom By C [Bz2\ {y}] ([V] oznacuje
linedrny obal mnoziny V' C X). Kedze B je baza, tak potom [Bz2 \ {y}] = X, a teda y je
linedrna kombindcia prvkov z Bs \ {y}. Ukézali sme, Ze By nie je linedrne nezavisld, ¢o je
spor s predpokladom, ze je to Hamelova baza.

Méame teda ukdzané (Vy € Bs)(3x € B1)y € Ba(z). Plati potom By = |J Ba(z). Pre

r€B1
kardinality dostdvame card B, = card( |J Ba(z)) < card B;.Xg = card By (v poslednej
€ B,
rovnosti sme vyuzili, Ze card B; je nekone¢nd.) Rovnakym spésobom ako card By < card By
mozeme ukézat nerovnost card By < card By. Z tychto dvoch nerovnosti (podla Cantor-

Bernsteinovej vety) dostaneme card By = card Bj. [l
Von Neumannova veta

Pekny dokaz von Neumannovej vety, vraj to vymyslel nejaky Student a volajako sa to
dostalo aj ku mne:

Doékaz. 7 predpokladov vety vyplyva, ze f(x) = Az + y je kontraktivne zobrazenie. Z Bana-
chovej vety o pevnom bode potom vyplyva, Ze existuje (pre lubovolné y) jediné z také, Ze
r=Ax+y, tj (I — Az =y.

Maéme teda existenciu inverzného zobrazenia k I — A, zostéva overit jeho spojitost a odhad
pre normu: 2 = Az +y =[] < 421+l < JAllal + lyl = 211~ 41D < lll =
el < =y O
Rovnobeznikové pravidlo

Obratenie rovnobeznikového pravidla

Doékaz. Ukézeme, Ze (x,y) je skalarny stéin. Vlastnosti (z,2) =0<xz=0a
(z,y) = (y, x) st zrejmé. Treba teda uz len ukdzat (x+y, z) = (z, 2)+(y, 2) a (ax,y) = alz,y).
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Tym mame (z+y, z) = (z,2) + (y, z). Tiez plati (z, —y) = (—x,y) = —(,y). Na zdklade
toho lahko indukciou ukdzeme (nz,y) = n(z,y) pre n € Z. Jednoducho sa to rozsiri aj na
racionalne ¢isla: q(2z,y) = (pz,y) = p(z,y) = (Lz,y) = E(2,y). Z raciondlnych éisel na
redlne to mozeme rozsirit limitnym prechodom. (Norma je spojité zobrazenie.) (|

15 Cauchyho tloha
Jednoznaénost rieSenia Cauchyho tlohy pre vlnovii rovnicu

Je to podobny dokaz ako na prednaske, ale snazil som sa ho pisat jednoduchsie. Preto to
aj dokazujem len v jednorozmere, a potom sa poktsim naznacit, ako by to slo vo viacrozmere.
(Samozrejme, mohol by som to pisat celé v n-rozmere, ale to by sme sa iba zbytocne ubili.)

K takémuto druhu dokazov sa zvykne kreslif aj obrazok. Tak si ho nakreslite.

Dokaz. Zakladna myslienka dékazu je presne rovnaké ako na prednaske — budeme sa snazif
dokézat, ze vo vrchole kazdého charakteristického kuzela je u nulové.

Z, je v jednorozmernom pripade trojuholnik. Parametrizacie jeho dvoch stran, na ktorych
u modZze byt nenulové, st
(t,z) =(r,r — 1), 7 € (0,r) (Gsecka u1),
(t,z) = (1,7 —7r), 7 € (0,r) (Gsecka usz).
Vyjadrime derivaciu ziZenia u na tieto usefky podla parametra 7. Pre f(7) = u(r,r — 7) a
g(7) = u(r,7—r) mame f'(1) = w(1,r—7) —ux (1,7 —7) a ¢'(7) = ue(r, 7= 7) + g (7,7 — 7).
Nas zaujirna hodnota u vo vrchole Z,«, ¢ize u(r,0).

u(r,0) 0 fo T)dT = fo ut T, 7 —T) — uz(T,7 — 7)dT
u(r,0 fo dT = fo ug (7,7 — 1) + up(r, 7 — r)dr
Jednotkovy vektor vonkaJseJ normaly je v; = %(1 1) na tsecke u; a vo = %(1, —1) na

tisecke uz. Ak polozime w(t, x) = (ut, —u,), tak vidime, Ze u(r,0) = /2 f w. =2 [ w.ts.

Kedze na podstave je w = 0, tak 2u(r,0) = v/2 | w.fids. Mozeme pouz1t vetu o divergencii
7%,

a dostaneme v/2u(0, ) f divwdS = f (Ugs — Ugy)dS = 0. O

Myslim, Ze analogicky by to islo aj vo viacrozmere. (Je predsa neprirodzené, aby to tam
neplatilo, ked to v jednorozmere plati.) Postupoval by som asi takto:

Teraz uvazujeme (¢,z) € RT x R™. Kazda povrchova tisecka kuzela Z,. je uréené nejakym
bodom z okraja podstavy (ktory je (n — 1)-rozmerna gula) zg. Nech uy = ” i Tentokrat
zvolime takuto parametrizaciu:

(5,8) = (r — (r — )" g (r — 7))

£(7) = ulr — (r = 7" ol — 7))

(7)) =n(r—7)" Y(us — 1p. grad u)
T

u(r,0) = [n(r —7)"  (us — up. grad u)dr
0

Ked uvedenti rovnost zintegrujeme cez vSetky g, ktoré prebiehaju (n — 1)-rozmernt gulu,
dostaneme



Ku(r,0) = [ (u; — upgradu)ds,
dZ,

lebo (r — 7)""1dS,_1dr ndm da (az na konstantu) dS. (To by sa malo dat overif pomocou
parametrizacie kuzela. A toto je prave dovod, preco sme museli zvolit takito parametrizaciu
povrchovej tsecky, ak sme chceli nakoniec dostat plosny integral po kuzeli.) Teraz je w =
(ut, — gradu). (Pri podrobnom dokaze by bolo este treba zistit jednotkovy vektor vonkajse;
normaly, ndm v8ak staci, ked z obrdzku vidime, Ze to bude (1, ug) po predeleni jeho normou.)
Pomocou vety o divergencii dostaneme objemovy integral z divw = wuy — Au (resp. jeho
nasobok).
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