Seminár z teórie čísel
Rôzne články o sume prevrátených hodnôt štvorcov:
-
Yoshio Matsuoka: An Elementary Proof of the Formula $\sum^\infty_{k = 1} 1/k^2 = \pi^2/6$, The American Mathematical Monthly, Vol. 68, No. 5 (May, 1961), pp. 485-487
-
Ioannis Papadimitriou: A Simple Proof of the Formula \sum... = \pi^2/6, The American Mathematical Monthly, Vol. 80, No. 4 (Apr., 1973).
-
Tom M. Apostol: Another Elementary Proof of Euler's Formula for \zeta(2n), The American Mathematical Monthly, Vol. 80, No. 4 (Apr., 1973), pp. 425-431.
-
Tom M. Apostol: A proof that Euler missed: evaluating zeta(2) the easy way, he Mathematical Intelligencer, September 1983, Volume 5, Issue 3, pp 59-60.
-
Josef Hofbauer: A Simple Proof of 1 + 1/2^2 + 1/3^2 + ... = \pi^2/6 and Related Identities, The American Mathematical Monthly, Vol. 109, No. 2 (Feb., 2002), pp. 196-200.
-
R. A. Kortram: Simple Proofs for $\sum\limits^\infty_{k=1} \frac{1}{k^2} = \frac{\pi^2} {6}$ and sin $x = x \prod\limits^\infty_{k=1} \bigg(1 - \frac{x^2}{k^2\pi^2} \bigg)$, Mathematics Magazine, Vol. 69, No. 2 (Apr., 1996), pp. 122-125.
-
D. Kalman: Six ways to sum a series, The College Mathematics Journal, Vol. 24, No. 5, (1993), pp. 402-421.
Ak sa k niektorým z článkov nebudete vedieť dostať, kľudne sa mi ozvite mailom.