
Gödel’s Incompleteness Theorems

Gödel’s Incompleteness Theorems belong to the most remarkable achievements of the
20th century mathematics, shedding light on the limitations of formal methods and still
raising philosophical questions about the nature of human thought, its relations to our
brains and to computers, etc.

Kurt Gödel’s achievement in modern logic is singular and monumental— indeed,
it is more than a monument, it is a landmark which will remain visible far in
space and time. [ . . . ] The subject of logic has certainly completely changed its
nature and possibilities with Gödel’s achievement. (John von Neumann)

Liar’s Paradox and the Paradoxes of Russell and Berry

Consider the following self-referential sentence:

“This sentence is not true.”

At least at a glance it look like a proposition, thus is seems legitimate to ask the question:
“Is it true or false?” If it is false, then it must be true. Similarly, if it is true, then it
cannot be true, hence it must be false. We can conclude that it is true if and only if it
is not true. This is the strong version of the famous Liar’s Paradox ; its ancient version,
also known as the Epimenidus Paradox , consists in the statement

“All the Cretans are liars,”

pronounced by the Cretan Epimenidus (tacitly assuming that liars always lie).
In everyday life we need not to worry too much about the Liar’s Paradox. We can

do away with it simply by marking that sentence as making no sense and not to care of
it any more. However, the situation changes radically if such a self-referential sentence
could be formulated within some formal deductive system like, e.g., an axiomatic first
order theory. Such a theory would be necessarily inconsistent. This namely happened
to the original version of Cantor’s “näıve” Set Theory.
Cantor’s Set Theory used the unlimited version of the Comprehension Principle in

forming sets:

For any “reasonable” property P (x) one can form the set {x : P (x)} of all objects x
having this property.

However intuitively appealing this principle might appear, it is fairly hazy, unless we
make clear which properties we consider as “reasonable”. What’s even worse, this prin-
ciple enables to formulate a set-theoretical version of Liar’s Paradox, namely Russell’s
Paradox, named after the British logician and philosopher Bertrand Russell:

Cantor’s Comprehension Principle allows us to form the set

R = {x : x is a set and x /∈ x}
of all sets x not belonging to itself.
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Then the question: “Does the set R belong to itself?” immediately produces a contra-
diction. Indeed, we have R ∈ R ⇔ R /∈ R.
Thus the original version of Cantor’s Set Theory is inconsistent; the unlimited Com-

prehension Principle makes it possible to reproduce the Liar’s Paradox inside of this
theory.
Liar’s Paradox can be avoided by restricting Cantor’s Comprehension Principle to

the following limited form:

For every set M and any “reasonable” property P (x) one can form the set
{x ∈M : P (x)} of all objects x from the set M having this property.

Then the previous formation of the set R becomes illegal, and Russell’s Paradox disap-
pears. Instead, it is transformed to the following fact:

There is no set of all sets.

Indeed, if there were the set V of all sets, then we could legally form the set

R = {x ∈ V : x /∈ x}
of all sets x not belonging to itself, and obtain the contradiction R ∈ R ⇔ R /∈ R once
again.

Berry’s Paradox demonstrates the need to clarify the vague concept of a “reasonable
property” and that way to make clear which properties can be used even in the limited
Comprehension Principle.

Consider the set A of all natural numbers which can be defined by some phrase of
English language consisting of less than twenty words. Since the English language has
a finite vocabulary, there are just finitely many English phrases consisting of less than
twenty words. Hence the set A is finite, and, as the set N of all natural numbers is infinite,
there exist natural numbers not belonging to the set A. In other words the complement
N ∖ A is nonempty, thus, according to the Well Ordering Principle, it contains the
smallest element. Then this natural number is defined by the English phrase

“The smallest natural number which cannot be defined by
any English phrase consisting of less than twenty words”

which has eighteen words, only. Hence the smallest element of the set N ∖ A has to
belong to the set A, as well. However, this is a contradiction, since A ∩ (N∖A) = ∅.

In Quest for a Way Out of the Crisis

The discovery of paradoxes in Cantor’s Set Theory at the turn of the 19th and 20th

century threw the mathematics of that time into a deep crisis. Moreover, it happened
shortly after Set Theory had become widely accepted and recognized as the universal
foundations of the whole of mathematics, providing it with a general common language
and a firm ground on which all mathematical branches could be formulated and presented
in a uniform way. Therefore the task to find a way out of the crisis became highly acute.
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Some mathematicians reacted by refusing completely the conception of actual in-
finity forming one of the cornerstones of Set Theory (H. Poincaré, L. E. J. Brouwer).
Namely Brouwer established the doctrine of intuitionism, insisting that the infinity can
be treated just as a potential and never completed process of growth or decay beyond
any limit. He also proposed a revision of logic, refusing some classical logical laws (e.g.,
the Law of Excluded Middle φ ∨ ¬φ, or the quantifier law ¬(∀x)¬φ(x) ⇒ (∃x)φ(x)) as
inapplicable within the realm of potentially infinite domains. The competing doctrine
of logicism suggested to develop mathematics as a branch of logic (G. Frege, B. Russell,
A.N. Whitehead) and to avoid the self-reference phenomenon, which they found respon-
sible for the contradictions, by means of a fairly complicated hierarchy of the Theory of
Types. However, none of these conceptions could compete with the approaches offered
by the Set Theory making use of the full power of classical logic and, at the same time,
avoiding the cumbersome hierarchy of the Theory of Types, along with preserving the
conception of actually infinite sets.

The axiomatic system of Set Theory designed by Ernst Zermelo, and later on upgraded
by Abraham Fraenkel, became the generally accepted foundations of most of the modern
mathematics. The Paradoxes of Russell and Berry (and some similar ones) were avoided
by a cautious formulation of the Scheme of Comprehension, allowing to single out new
sets just as subsets of sets given in advance by means of properties described by set-
theoretical formulas. Three exceptions of sets, still described by set-theoretical formulas,
but not singled out from any in advance given set, are allowed by the Axioms of Pair,
Union and Power Set.

No one was able to reproduce the known paradoxes, nor to produce any contradic-
tion within the Zermelo-Fraenkel axiomatic system with the Axiom of Choice ZFC.
Unfortunately, this does not exclude the possibility that, all the same, there are some
contradictions, hidden deeply under the surface. This raised the task to prove the con-
sistency of ZFC or of some other axiomatic system of Set Theory, capable to undertake
the role of the foundations of mathematics. The project of proving the consistency of the
foundations of mathematics was formulated by David Hilbert, the leading figure of the
that time mathematics, who also designed the central notions and methods necessary
for that purpose. The project is known under the name Hilbert’s Program.

Hilbert’s Program was an ambitious and wide-ranging project in the philosophy

and foundations of mathematics. In order to “dispose of the foundational

questions in mathematics once and for all”, Hilbert proposed a two-pronged

approach in 1921: first, classical mathematics should be formalized in axiomatic

systems; second, using only restricted, “finitary” means, one should give proofs

of the consistency of these axiomatic systems. Although Gödel’s Incompleteness

Theorems show that the program, as originally conceived, cannot be carried out,

it had many partial successes, and generated important advances in logical

theory and meta-theory, both at the time and since.

(Richard Zach, Hilbert’s Program Then and Now, arXiv:math/0508572)
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Gödel’s Incompleteness Theorems

Preliminary Accounts

Consider the following self-referential sentence:

“This sentence is unprovable.”

tacitly assuming that every sentence which is provable, is necessarily true. Once again
we find legitimate to ask the question: “Is that sentence true or false?” If it is false,
then it is provable, hence it must be true. This contradiction shows that it cannot be
false, hence it is true. That way we have proved that this sentence is true, in other
words, we have proved the sentence. Thus it is provable, hence, since it declares its own
unprovability, it is false. At the same time, provable sentences must be true. It seems
that we once again obtained a contradiction, closely related to Liar’s Paradox.
However, this conclusion can be avoided by making precise the concept of provability.

If it means provability within some formal axiomatic system (e.g., within some first order
theory), then our proof of the above sentence is just an informal intuitive argumentation
showing that it is true, and not a proof within that system. Moreover, statements about
provability within a given formal system in general do not belong to that system, hence
the question of their provability within that system makes no sense. Thus it seems that
the threatening paradox can be swept away from the very beginning.
All the same, let us admit that some formal systems could perhaps satisfy the following

two properties:

(1) There is a sufficiently extensive distinguished class of statements formulated in the
language of that system such that all statements from this class which are provable
in the system are true in some intuitively appealing meaning of this word.

(2) There is a statement belonging to the above mentioned distinguished class declar-
ing its own unprovability within the system.

Then that system is necessarily incomplete in the following sense:

(3) There are intuitively true statements formulated in the language of the system
(and even belonging to that distinguished class) which are unprovable within that
system.

Namely the statement belonging to that distinguished class and declaring its own un-
provability within the system is an example of an intuitively true statement which is not
provable within the system.

Now, the reader probably can hardly suppress the feeling that the existence of such
formal axiomatic systems (first order theories) is merely hypothetical, and in fact it
should be possible to show that nothing like that can exist. Thus it might be rather
surprising to realize what the young Austrian mathematician, logician and philosopher
Kurt Gödel (born 1906 in Brno) has proved in 1930. Namely, according to his First
Incompleteness Theorem, Peano Arithmetic, as well as any first order theory capable
to serve as the foundations of a reasonable fragment of mathematics, like ZF or ZFC,
provide examples of such axiomatic systems. According to his Second Incompleteness
Theorem, such systems are capable to formulate a statement declaring their own con-
sistency, nonetheless, if they are consistent, they are unable to prove it, though, in that
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case, the statement itself is true. As one of the consequences of Gödel’s discoveries it
became manifest that the goals of Hilbert’s Program cannot be achieved.

The First Gödel Incompleteness Theorem

It is worth mentioning that Gödel worked within the intentions of Hilbert’s Program
and his Incompleteness Theorems appeared surprisingly on the way, without having been
planned or anticipated in advance. We will skip almost all technical issues of Gödel’s
proof and begin with displaying some final results of his coding of formulas and proofs by
natural numbers and representation of the provability relation by certain arithmetical
predicate. It should be noted that our presentation differs considerable from Gödel’s
original one.
Informally, the First Gödel Incompleteness Theorem states that any consistent formal

system which is sufficiently ample to include Peano Arithmetic is necessarily incomplete,
either in the sense that it contains some true propositions about natural numbers which
it cannot prove (semantic version), or in the sense that it contains certain arithmetical
propositions which it can neither prove nor refute (syntactic version).
Let’s begin with introducing some concepts necessary for describing more precisely

the variety of first order theories to which Gödel’s results apply. A first order theory
T in a language with finitely many specific symbols is called recursively axiomatizable
if it has just finitely many axioms or its axioms can be effectively recognized by some
algorithm (e.g., by a computer program). A first order theory T is called arithmetical if
there is some interpretation of Peano Arithmetic in this theory. This is to say that there
are some formulas Nat(x), Add(x, y, z), Mult(x, y, z), Zero(x), One(x) in the language of
T defining the concept of natural number, the operations of addition and multiplication
of natural numbers and the distinguished objects 0 and 1, respectively, in such a way
that for the structure of natural numbers thus obtained all the axioms of PA can be
proved in T . If T is an arithmetical theory then a formula φ in the language of T is
called arithmetical if it is built out of the “new” atomic formulas of the form x = y,
Add(x, y, z), Mult(x, y, z), Zero(x), One(x) by means of logical connectives and bounded
quantifications (∀x)(Nat(x) ⇒ φ), (∃x)(Nat(x) ∧ φ). An arithmetical theory T is
called arithmetically correct if all the arithmetical sentences provable in T are satisfied
in (N; +, ·, 0, 1).
An obvious example of a recursively axiomatizable arithmetically correct theory is

the Peano Arithmetic itself. Other paradigmatic examples of such theories are recursive
extensions of PA by axioms which are true in (N; +, ·, 0, 1), as well as various set theories
like, e.g., ZF or ZFC.
Given an arithmetical sentence θ we will say that θ is true or valid or satisfied if it is

satisfied in the standard model of Peano Arithmetic (N; +, ·, 0, 1). For an arithmetical
sentence of the form ψ(k1, . . . , kn), where ψ(x1, . . . , xn) is an arithmetical formula and
k1, . . . , kn are concrete natural numbers (constant arithmetical terms), we also use to
say that ψ(k1, . . . , kn) holds or, simply, ψ(k1, . . . , kn) in that case.
Gödel developed a method of coding or enumeration by means of which all the arith-

metical formulas in the language of an arithmetical theory T with a single free variable
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x can be lined up in a sequence φ0(x), φ1(x), . . . , φn(x), . . . in such a way that, for each
n, the formula φn(x) can be effectively constructed (e.g., by a program), and vice versa,
for each arithmetical formula ψ(x), its number n such that ψ(x) coincides with φn(x)
can be effectively determined. If T is additionally recursively axiomatizable then also
all proofs in T can be lined up in a sequence ∆0,∆1, . . . ,∆k, . . . in such a way that the
correspondence k ↔ ∆k can be effectively described (e.g., executed by some programs)
in either direction. Moreover, in that case Gödel constructed two effectively decidable
ternary arithmetical predicates P (x, y, z) and R(x, y, z) of provability and refutability,
respectively, such that for any natural numbers k, m, n the following conditions are
satisfied:

P (m,n, k) if and only if ∆k is a proof of the sentence φn(m) in T ;

R(m,n, k) if and only if ∆k is a proof of the sentence ¬φn(m) in T .

At the same time the algorithmic decidability of the predicates P (x, y, z) and R(x, y, z)
ensures that, for any m,n, k ∈ N, the satisfaction of any of the statements P (m,n, k),
¬P (m,n, k), R(m,n, k), ¬R(m,n, k), respectively, in (N; +, ·, 0, 1) is equivalent to its
provability in PA, henceforth in T . Namely the algorithm deciding whether P (m,n, k)
holds or not provides the proof either of the statement P (m,n, k) or of its negation, and
similarly for R(m,n, k). Summing up, we have:

Theorem. Assume that T is a consistent recursively axiomatizable arithmetical theory.
Then, for any natural numbers m, n, k, the three conditions in each of the following
four rows are equivalent:

P (m,n, k) T ⊢ P (m,n, k) ∆k is a proof of the sentence φn(m) in T

R(m,n, k) T ⊢ R(m,n, k) ∆k is a proof of the sentence ¬φn(m) in T

¬P (m,n, k) T ̸⊢ P (m,n, k) T ⊢ ¬P (m,n, k)
¬R(m,n, k) T ̸⊢ R(m,n, k) T ⊢ ¬R(m,n, k)

In particular, T decides both the statements P (m,n, k) and R(m,n, k) for any m, n, k.

Now, we have all the necessary ingredients needed for the formulation of Gödel’s
results. Consider the formula ¬(∃ z)P (x, x, z). It has a single free variable, namely
x, hence it occurs in the sequence {φn(x)}n∈N under some number— let’s denote it g.
Thus φg(x) is the above formula, and substituting the natural number g into it for x
we obtain the sentence φg(g), i.e., ¬(∃ z)P (g, g, z), saying that, for no z = k, ∆k is the
proof of the sentence φg(g). In other words, the meaning of that sentence is:

φg(g) : “The sentence φg(g) is not provable in T .”

Hence φg(g) is an example of a self-referential sentence in the language of T declaring
its own unprovability. On the other hand, the reader should keep in mind that φg(g) is
an arithmetical statement, like, e.g., ¬(∃x, y, z)

(
(x+ 1)2 + (y + 2)3 = (z + 3)4

)
, saying

that the diophantic equation (x+1)2+(y+2)3 = (z+3)4 has no solution in the domain
of all natural numbers.
Thus our preliminary accounts entitle us to state the semantic version of Gödel’s First

Incompleteness Theorem.
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First Gödel Incompleteness Theorem. [Semantic version] If T is a recursively
axiomatizable arithmetically correct first order theory then the Gödel’s sentence φg(g)
is true in (N; +, ·, 0, 1), nonetheless, it is unprovable in T . Thus T is incapable to prove
all the true arithmetical statements about natural numbers.

In particular, neither PA nor any of the set theories like, e.g., ZF or ZFC, can prove
all the true arithmetical statements about natural numbers.
Since we have no direct access to the infinite domain N of all natural numbers, the

semantic concept of arithmetical truth playing a key role in the semantic version of
Gödel’s First Incompleteness Theorem “smells of metaphysics” and may evoke some
bewilderment in the reader. It relies on our belief that (N; +, ·, 0, 1) is a model of
PA, which, however, can hardly be considered as an obvious or firmly and doubtlessly
established fact. Nonetheless, this semantic belief is even stronger than its syntactic
counterpart, namely the weaker belief in the consistency of PA, of which we still lack a
direct and immediate evidence. Anyway, it will be interesting to see what we can infer
from this weaker syntactic assumption.

First Gödel Incompleteness Theorem. [Syntactic version] Let T be a recursively
axiomatizable arithmetical theory.
(a) If T is consistent then the Gödel’s sentence φg(g) is unprovable in T .
(b) If T is ω-consistent then neither the sentence ¬φg(g) is provable in T .
Thus the assumption of ω-consistency of T implies that T is incomplete.

Let us remark that ω-consistency is a technical condition, stronger than mere consis-
tency, which we will formulate in the course of the demonstration of (b).

Demonstration. (a) Assume that the sentence φg(g) is provable in T . From this point
on we can proceed in two different ways. We will present both of them.
First, the provability of φg(g) means that this sentence has some proof, say ∆k, in T .

Then P (g, g, k) holds, and due to the algorithmic nature of the predicate P (x, y, z), the
statement P (g, g, k) is provable in T . It follows that (∃ z)P (g, g, z), which is equivalent
to ¬φg(g), is provable in T , as well. Thus we have both T ⊢ φg(g) and T ⊢ ¬φg(g),
contradicting the consistency of T .
The second argument starts with realizing the form of φg(g): in fact we have as-

sumed that T ⊢ ¬(∃ z)P (g, g, z), hence T ⊢ (∀ z)¬P (g, g, z), since the second sentence
is equivalent to the first one. It follows that T ⊢ ¬P (g, g, k) for each k ∈ N. Therefore,
¬P (g, g, k) holds for each k, by Theorem. . . . It means that none of the proofs ∆k is a
proof of the sentence φg(g) in T , in other words, φg(g) is unprovable in T . This contra-
dicts our original assumption which is henceforth wrong. Therefore φg(g) is unprovable
in T .

(b) Assume that the sentence ¬φg(g), which is equivalent to (∃ z)P (g, g, z), is provable
in T . If there were some k ∈ N such that P (g, g, k), we could infer that ∆k is a proof of
φg(g) in T . Then both φg(g) as well as ¬φg(g) were provable in T , and we could refute
our initial assumption that T ⊢ ¬φg(g) as contradicting the mere consistency of T (and
get through without the assumption of its ω-consistency).
So does the provability of the arithmetical sentence (∃ z)P (g, g, z) imply that there

is indeed some k ∈ N such that P (g, g, k)? The positive answer to this question seems
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obvious at a glance. If there were a constructive proof of the statement (∃ z)P (g, g, z),
it would give us some concrete k such that P (g, g, k). Unfortunately, we cannot exclude
that the proof of the statement (∃ z)P (g, g, z) proceeds in an indirect nonconstructive
way, just deriving a contradiction from the assumption ¬(∃ z)P (g, g, z), and giving not
even a hint how the k such that P (g, g, k) could be found. To conclude, our optimism
was precocious, and our original idea of demonstration doesn’t work. To get through we
need something more.
An arithmetical theory T is called ω-consistent if, for no arithmetical formula ψ(z),

all the sentences (∃ z)ψ(z), ¬ψ(0), ¬ψ(1), . . . , ¬ψ(k), . . . are provable in T . Obviously,
any ω-consistent arithmetical theory must be consistent.
Now assuming that T is ω-consistent and T ⊢ (∃ z)P (g, g, z), we can conclude that

T ̸⊢ ¬P (g, g, k) for some k. Then P (g, g, k) holds for this k by Theorem. . . . From this
point on the original argument can be applied.

The following Example illustrates the difference between a purely existential and a
constructive proof of an existential statement.

Example. We will prove the theorem:

“There exist irrational numbers a, b > 0 such that the number ab is rational.”

Proof. It is known (and easy to show) that
√
2 is an irrational number. Then the number

√
2
√
2
is either rational or irrational. If it is rational, we are done by taking a = b =

√
2.

If
√
2
√
2
is irrational, we put a =

√
2
√
2
and b =

√
2. Then both a, b are irrational and

ab =

(√
2
√
2
)√
2

=
(√
2
)(√2√2)

=
(√
2
)2
= 2

Since ab = 2 is obviously rational, we are done again.

The reader should realize that our proof is purely existential, making use of the Law

of Excluded Middle. We do not know whether the number
√
2
√
2
is rational or irrational,

therefore we do not know which one of the couple of possibilities really works. From the
intuitionistic or constructivist viewpoint such proofs are unacceptable. A constructive

proof would require to decide whether
√
2
√
2
is rational or irrational and provide an

explicit unambiguous choice of the pair a, b.

In fact it is known, but not so easy to show, that the number
√
2
√
2
is irrational

(hence the second possibility takes place in the proof above).

Later on B. Rosser formulated a modification of Gödel’s statement ¬(∃ z)P (g, g, z)
making possible to avoid the assumption of ω-consistency and to prove the incomplete-
ness of recursively axiomatizable arithmetic theories assuming their mere consistency.
Consider the arithmetical formula (∀ z)(P (x, x, z) ⇒ (∃u ≤ z)R(x, x, u)). Let us

denote by r its number in the list {φn(x)}n∈N. Substituting r for x into the formula
φr(x) we obtain the self-referential sentence φr(r), i.e.,

(∀ z)(P (r, r, z) ⇒ (∃u ≤ z)R(r, r, u))
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Its meaning can be deciphered as follows:

φr(r) : “If the sentence φr(r) is provable in T by some proof of a given number
then, among the proofs of at most that number, there is a proof

of its negation ¬φr(r) in T .”

Needless to say, the following version of the First Incompleteness Theorem is of syn-
tactic nature.

Gödel-Rosser Incompleteness Theorem. Let T be any recursively axiomatizable
arithmetical theory. If T is consistent then neither the Rosser sentence φr(r) nor its
negation ¬φr(r) are provable in T . Hence, if T is consistent then it is incomplete.

Demonstration. Assume that φr(r) is provable and ∆k is its proof in T . Then both the
statements P (r, r, k) and (∃u ≤ k)R(r, r, u) are provable in T , as well. The latter is
equivalent to the alternative

R(r, r, 0) ∨R(r, r, 1) ∨ . . . ∨R(r, r, k)

Then, however, it suffices to check the proofs ∆0, ∆1, . . . , ∆k and it is guaranteed
that one from among them is a proof of the sentence ¬φr(r) in T , contradicting its
consistency.
Now, assume that ¬φr(r) is provable in T by a proof ∆l. Then we have R(r, r, l),

and the algorithm verifying this fact provides a proof of R(r, r, l) in T . Realizing that
¬φr(r) is equivalent to the sentence

(∃ z)
(
P (r, r, z) ∧ (∀u)(R(r, r, u)⇒ z < u)

)
we can infer that the statement (∃ z < l)P (r, r, z) is provable in T . Then necessarily
l > 0, and the last statement is equivalent to the alternative

P (r, r, 0) ∨ P (r, r, 1) ∨ . . . ∨ P (r, r, l − 1)

Hence among the proofs ∆0, ∆1, . . . , ∆l−1, there is a proof of the sentence φr(r) in T ,
contradicting the consistency of T , again.

The Second Gödel Incompleteness Theorem

Informally, the Second Gödel Incompleteness Theorem states that any formal system
which is sufficiently ample to include Peano Arithmetic cannot prove its own consistency.
However, it should be realized that the statement that some formal system is consistent is
a statement about the system which is not even formulated in the language of the system,
thus the question of its provability within the system makes no sense. Hence it is a highly
important fact that some formal systems, in particular, all recursively axiomatizable
arithmetical first order theories, indeed allow for formulation of such statements.
Given an arithmetical theory T , we say that an arithmetical sentence θ is a consistency

statement for T if the consistency of T is equivalent to the validity of θ in (N; +, ·, 0, 1).
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If T is additionally recursively axiomatizable then there are several possibilities how to
formulate the consistency statement for T .

(1) Let us recall that a theory T in a first order language L is inconsistent if there is a
sentence ψ in the language L such that both ψ and ¬ψ are provable in T . Accordingly,
the consistency statement can be formulated in following fairly suggestive way:

Cons1(T ) : ¬(∃x, y, z, w)(P (x, y, z) ∧R(x, y, w))

excluding the existence of any sentence of the form φn(m) such that both φn(m),
¬φm(m) were provable in T .

(2) Equivalently, T is inconsistent if and only if every L-sentence is provable in T .
Thus T is consistent if and only if there is at least one L-sentence ψ not provable in T .
We have a considerable freedom of choice for this sentence. In particular, we can follow
the “way of economy” suggested by John von Neumann and take Gödel’s statement
φg(g) for that purpose. Indeed, if φg(g) is provable in T then, as we already have seen,
T is inconsistent. The other way round, if φg(g) is unprovable in T then, of course, T is
consistent. Thus T is consistent if and only if φg(g) is not provable in T . This gives us
the consistency statement

Cons2(T ) : ¬(∃ z)P (g, g, z),

which coincides with the formerly introduced Gödel’s statement φg(g).

(3) Last but not least, we can take some logical axiom or some axiom of PA; then
the requirement of unprovability of its negation is clearly equivalent to the consistency
of T . In particular, let s ∈ N be the number of the formula x ̸= x. Then φs(0) is the
sentence 0 ̸= 0. That way we obtain yet another consistency statement:

Cons3(T ) : ¬(∃ z)P (0, s, z)

expressing the unprovability of the sentence 0 ̸= 0 in T .

Exercise. (a) When dealing with the syntactic version of the First Gödel’s Incomplete-
ness Theorem, we have shown that from the provability of Gödel’s sentence φg(g) in T
there follows the provability of its negation ¬φg(g) in T . Taking for granted that the
implication

(∃ z)P (g, g, z)⇒ (∃u)R(g, g, u)

formalizing that account is provable in T , show that the implication

¬(∃x, y, z, w)(P (x, y, z) ∧R(x, y, w))⇒ ¬(∃ z)P (g, g, z)

is provable in T , as well. Therefore the provability of the consistency statement Cons1(T )
from (1) in T implies the same for Gödel’s sentence φg(g).
(b) Similarly as in (a), we can infer that from the provability of Gödel’s sentence

φg(g) there follows the provability of the sentence 0 ̸= 0 in T . Take for granted that the
implication

(∃ z)P (g, g, z)⇒ (∃u)P (0, s, u)
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formalizing this account is provable in T and show that the provability of the consistency
statement Cons3(T ) from (3) in T implies the same for Gödel’s sentence φg(g), again.

Thus for a recursively axiomatizable arithmetical theory T with the provability pred-
icate P (x, y, z) and, possibly, with the refutability predicate R(z, y, z), the consistency
statement Cons(T ) can be formulated within its language by any of the three sentences
Cons1(T ), Cons2(T ), Cons3(T ) mentioned above (as well as by many more ones). At
the same time, the assumption of provability of any of these statements in T yields the
provability of Gödel’s sentence φg(g) in T . Summing up we have:

Second Gödel Incompleteness Theorem. Let T be a recursively axiomatizable
arithmetical theory. Then T allows for the formulation of its own consistency state-
ment Cons(T ). However, if T is consistent then any of the consistency statements
Cons1(T ), Cons2(T ), Cons3(T ) from the above list is unprovable in T .

If T is a consistent recursively axiomatizable arithmetical theory then, by Gödel’s
Second Incompleteness Theorem, the statement Cons(T ) is not provable in T , thus, due
to the Theorem on Proof by Contradiction, its extension T∪{¬Cons(T )} is consistent, as
well. However, as T is consistent, the axiom ¬Cons(T ) is not satisfied in (N; +, ·, 0, 1),
hence T ∪ {¬Cons(T )} cannot be arithmetically correct even if T is. Next we denote,
for definiteness’ sake, by Cons(T ) the Gödel’s statement φg(g). Then the statement
(∃ z)P (g, g, z), being logically equivalent to ¬Cons(T ), is provable in T ∪ {¬Cons(T )}.
However, since T is consistent, none of the proofs ∆k is a proof of the sentence φg(g),
i.e., of Cons(T ), in T , therefore all the statements ¬P (g, g, k), for k ∈ N, are true
in (N; +, ·, 0, 1), hence provable in T and the more in T ∪ {¬Cons(T )}. That way
T ∪ {¬Cons(T )} is an example of a consistent theory which is not ω-consistent. On the
other hand, if T is arithmetically correct then so is T ∪ {Cons(T )}.
In the following two exercises T denotes a recursively axiomatizable arithmetical

theory with the provability predicate P (x, y, z) and refutability predicate R(x, y, z).

Exercise. The initial account in (2) suggests the following formalization of the consis-
tency statement for T :

Cons4(T ) : (∃x, y)(∀ z)¬P (x, y, z)

declaring the existence of some sentence φn(m) unprovable in T . However, the fact that
its syntactic complexity (due to the quantifier prefix ∃∀ ) is one step higher than that
of the previous three consistency statements causes that it is not so easy to derive any
conclusions from the assumption of the provability of Cons4(T ) in T .
(a) Show that Cons4(T ) is a consistency statement for T .
(b) Examine the provability status of the consistency statement Cons4(T ) in T . Real-

ize that the mere assumption that T is consistent still does not allow us to show neither
that Cons4(T ) is provable nor that it is unprovable in T . Observe that the implication
φg(g) ⇒ Cons4(T ) is logically valid. Next, show that if T is ω-consistent then the
negation ¬Cons4(T ) is not provable in T .
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Exercise. (a) Show that the Rosser formula φr(r) is not a consistency statement for T .
What about its negation ¬φr(r) ?
(b) Show that both the sentences ¬(∃ z)P (r, r, z),¬(∃u)R(r, r, u) are consistency

statements for T . What is their provability status?

In view of Gödel’s results it is perhaps surprising but anyway worthwhile to mention
that S. Feferman in 1960, at the cost of higher complexity, constructed a consistency
statement Cons∗(PA) for Peano Arithmetic which, nevertheless, is provable in PA. How-
ever, for such a consistency statement neither the equivalence Cons∗(PA)⇔ Consi(PA)
nor even the implication Cons∗(PA)⇒ Consi(PA), for any i = 1, 2, 3, is provable in PA
(unless PA is inconsistent).

Attempts at Completion

There naturally arises the question whether Peano Arithmetic cannot be completed by
adding to it some new axioms of which we know that they are satisfied in the standard
model (N; +, ·, 0, 1). One possible candidate could be recursively constructed as follows:
Let T0 be the theory PA itself. Given the theory Tq, for q ∈ N, we construct the sequence
∆q
0,∆

q
1, . . . , ∆

q
k, . . . of all proofs in Tq and the provability predicate Pq(x, y, z) for Tq such

that, for any k,m, n ∈ N,
Pq(m,n, k) if and only if ∆q

k is a proof of the sentence φn(m) in Tq
Then we put

Tq+1 = Tq ∪ {Cons(Tq)}

where Cons(Tq) is any of the consistency statements Consi(Tq) for fixed i = 1, . . . , 3.
In other words, Tq+1 is the extension of Tq by the consistency axiom Cons(Tq) for Tq.
Obviously, every Tq is a recursively axiomatizable arithmetically correct theory. Thus
putting

T̂ =
∪
q∈N

Tq

we get an arithmetically correct theory in which all the consistency statements Cons(Tq)
can be proved. However, T̂ is still recursively axiomatizable, hence all the previous
incompleteness results apply to it. In particular, T̂ is incomplete, it can formulate
its own consistency statement Cons

(
T̂
)
which, nevertheless, it is incapable to prove.

Moreover, as shown by Alan Turing, Peano Arithmetic cannot be completed even by
transfinite iteration of the procedure of extending it by adding consecutive consistency
statements to it.
One of the aspects of the incompleteness of PA and related theories can be more

specifically identified as the phenomenon of ω-incompleteness, i.e., a kind of “nonuni-
formity” of provability in them. For instance, if ψ(x) is a formula in the language of PA
then the provability in PA of all the sentences ψ(m) for any m ∈ N still does not imply
the provability of its universal closure (∀x)ψ(x) in PA. It can namely happen that the
particular proofs of the individual instances ψ(0), ψ(1), . . . , ψ(m), . . . differ to such
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an extent that it is impossible to compose a uniform proof of the universally quantified
statement (∀x)ψ(x) out of them. An arithmetical theory T is called ω-complete if this
cannot happen, i.e., if, for every arithmetical formula ψ(x), the provability in T of all the
particular instances ψ(m) for all m ∈ N already implies the provability of its universal
closure (∀x)ψ(x) in T .
A construction of a complete extension of PA based on the removal of the ω-incomplet-

eness phenomenon was proposed by S. Feferman in 1962. However, in order to extend PA
to both a complete and ω-complete theory he had to sacrifice the condition of recursive
axiomatization. By transfinite recursion over the ordinal numbers less than certain limit
ordinal ζ ≤ ωωω

he constructed a sequence of arithmetical theories {Tα}α<ζ and a
sequence of provability predicates

{
Pα(x, y, z)

}
α<ζ
for these theories such that

T0 = PA

Tα+1 = Tα ∪
{
(∀x)(∃ z)Pα(x, n, z)⇒ (∀x)φn(x) : n ∈ N

}
for each α < ζ

Tλ =
∪
α<λ

Tα for any limit ordinal λ < ζ

Adding the new axioms

(∀x)(∃ z)Pα(x, n, z)⇒ (∀x)φn(x)

for n ∈ N to the axioms of Tα guarantees the provability of every universally quantified
statement (∀x)φn(x) in Tα+1, once all its particular instances φn(m) for m ∈ N are
provable in Tα.
Finally, it can be shown that the arithmetical theory

T̃ =
∪
α<ζ

Tα

is not only ω-complete but also complete and ω-consistent. However, in order to derive
at this conclusion we have to assume that PA is consistent. Assuming that PA is
arithmetically correct, we can infer that so is T̃ .

The Theorems of Tarski and Church-Turing

To complete the picture we formulate two further incompleteness results by A. Tarski,
and A. Church and A. Turing, respectively. Tarski’s Theorem on Undefinability of
Truth states informally that the property of arithmetical sentences “to be true” cannot
be defined by any formula in the language of those sentences. More precisely, it says that
the satisfaction relation for arithmetical formulas in the standard model (N; +, ·, 0, 1)
cannot be expressed by any arithmetical formula. In the theorems below we once again
refer to the sequence {φn(x)}n∈N of arithmetical formulas.
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Tarski’s Theorem on Undefinability of Truth. Let T be any arithmetical first
order theory. Then there is no arithmetical formula σ(x, y) in the language of T such
that for any m,n ∈ N we have

(N; +, ·, 0, 1) ⊨ φn(m)⇔ σ(m,n)

Demonstration. Admit that such a formula σ(x, y) exists. Then ¬σ(x, x) is an arithmeti-
cal formula with a single free variable x, thus it can be found in the sequence {φn(x)}n∈N
under some index t ∈ N. Then the following statements are equivalent in (N; +, ·, 0, 1):
σ(t, t), φt(t), ¬σ(t, t). Hence

(N; +, ·, 0, 1) ⊨ σ(t, t)⇔ ¬σ(t, t)

which is contradiction.

Tarski’s Theorem, which is of semantic nature, imposes severe limitations on the
possibility of self-representation of arithmetical theories. In order to be able to define
a satisfaction formula σ(x, y) for T it is necessary to extend T to a first order theory
T ′ in a “metalanguage” whose expressive power goes beyond that of T . For example, a
satisfaction formula for Peano Arithmetic can be defined in the Second Order Arithmetic
or in the Zermelo-Fraenkel Set Theory.

Dealing with decidability questions both A. Church and A. Turing were heavily influ-
enced by the work of K. Gödel on completeness of the First Order Logic and even more
by his work on incompleteness of Peano Arithmetic and related theories. While Church
developed the so called λ-calculus and used it as a paradigmatic model of general com-
putations, Turing designed ideal models of computing devices which became known as
Turing machines. Soon it became clear that both approaches are equivalent. The proof
of their Undecidability Theorem is beyond the scope of our course.

Church-Turing Undecidability Theorem. Let T be any consistent recursively ax-
iomatizable arithmetical theory. Then there is no algorithm which could decide whether
any given arithmetical sentence in the language of T is provable in T . In particular,
there is no algorithm which could decide the question of provability in T of the sentence
φn(m) for every input (m,n) ∈ N× N.

Church also proved that there is no algorithm which could decide whether a sentence
in a first order language L with at least one binary relational symbol or at least two oper-
ation symbols is a “first order tautology”, i.e., whether it is satisfied in all L-structures,
(or, which is the same, whether is provable just from the logical axioms). Thus there
is a striking difference between the First Order Logic and the Propositional Calculus in
which the tautologies can be effectively recognized by the truth table algorithm.

Compared with Tarski’s Theorem, Church-Turing Theorem is of syntactic charac-
ter. While Tarski’s Theorem imposes some limits to what can be expressed by formal
languages, Church-Turing Theorem sets up some limits to what can be computed by
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any mechanical or electronic device or effectively decided by means of an algorithmic
computational procedure. However, they both, together with Gödel’s Incompleteness
Theorems, of course, raise various questions about the relation of computers, human
brains and human mind or spirit.

Goodstein Sequences:

An Example of a True Arithmetical Statement Unprovable in PA

It can be objected that the true statements unprovable in PA constructed by Gödel and
Rosser, like φg(g), φr(r), Cons(PA) (no matter which possibility we choose), are highly
artificial and deprived of proper mathematical meaning and content. However, there
are indeed several known arithmetical theorems of combinatorial or number theoretic
character which, nonetheless, are unprovable in PA. As a rule, they illustrate the ω-
incompleteness phenomenon at the same time. Some examples of universally quantified
statements of the form (∀x)ψ(x) unprovable in PA, nonetheless true in (N; +, ·, 0, 1) in
the sense that all the particular instances ψ(m) for each m ∈ N are even provable in
PA, are provided by the Paris-Harrington strengthening of Ramsey’s Theorem or by
the Goodstein sequences. Both these results are in fact equivalent to the consistency of
Peano Arithmetic. We will briefly explain the nature of the latter example.
Given a natural number b ≥ 2, the hereditary base b expansion of any natural number

m is obtained from the its usual base b expansion by expanding all its exponents at the
base b, again, doing the same with the exponents of exponents, and repeating this
procedure until all the numbers bigger than b are eliminated from this expression. For
instance, the hereditary base 2 expansion of the number m = 357 reads as follows:

357 = 28 + 26 + 25 + 22 + 1 = 22
3

+ 22
2+2 + 22

2+1 + 1

= 22
2+1

+ 22
2+2 + 22

2+1

+ 22
2+1 + 1

Its hereditary base 3 expansion is

357 = 35 + 34 + 33 + 2 · 3 = 33+2 + 33+1 + 33 + 2 · 3

Similarly, the hereditary base 2 expansion of the number m = 1000 is

1 000 = 29 + 28 + 27 + 26 + 25 + 23

= 22
3+1 + 22

3

+ 22
2+2+1 + 22

2+2 + 22
2+1 + 22+1

= 22
2+1+1 + 22

2+1

+ 22
2+2+1 + 22

2+2 + 22
2+1 + 22+1

On the other hand, its hereditary base 5 expansion coincides with its plane base 5
expansion:

1 000 = 54 + 3 · 53
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For any natural number m we construct the Goodstein sequence of natural numbers

G(m, 0), G(m, 1), G(m, 2), . . . , G(m,n), G(m,n+ 1), . . .

corresponding to m, which starts with G(m, 0) = m, and having arrived at the number
G(m,n), if G(m,n) > 0 then the next item G(m,n + 1) is obtained by replacing every
occurrence of the number n+2 in the hereditary base n+2 expansion of G(m,n) by the
number n + 3 and subtracting 1 from the result; if G(m,n) = 0 then G(m,n + 1) = 0,
as well. For example, for m = 29, we get

G(m, 0) = 24 + 23 + 22 + 1 = 22
2

+ 22+1 + 22 + 1

G(m, 1) = 33
3

+ 33+1 + 33 + 1− 1 = 33
3

+ 33+1 + 33 = 7625 597 485 095

G(m, 2) = 44
4

+ 44+1 + 44 − 1 = 44
4

+ 44+1 + 3 · 43 + 3 · 42 + 3 · 4 + 3 ≈ 1.340 · 10154

G(m, 3) = 55
5

+ 55+1 + 3 · 53 + 3 · 52 + 3 · 5 + 3− 1

= 55
5

+ 55+1 + 3 · 53 + 3 · 52 + 3 · 5 + 2 ∼ 102 200

G(m, 4) = 66
6

+ 66+1 + 3 · 63 + 3 · 62 + 3 · 6 + 2− 1

= 66
6

+ 66+1 + 3 · 63 + 3 · 62 + 3 · 6 + 1 ∼ 1036 305

G(m, 5) = 77
7

+ 77+1 + 3 · 73 + 3 · 72 + 3 · 7 + 1− 1

= 77
7

+ 77+1 + 3 · 73 + 3 · 72 + 3 · 7 ∼ 10696 000

. . . . . .

The above computations indicate that the Goodstein sequences {G(m,n)}∞n=0 grow
rapidly for any m, and not just for the particular value m = 29. Thus the following
result is highly surprising and unexpected.

Goodstein’s Theorem [1944]. For every natural number m there exists a natural
number n such that G(m,n) = 0.

In fact, for m ≤ 3, the sequence {G(m,n)}∞n=0 assumes the value 0 fairly quickly.
The reader can easily verify that G(0, n) = 0, for each n, G(1, 0) = 1, G(1, n) = 0 for
n ≥ 1, G(2, 0) = G(2, 1) = 2, G(2, 2) = 1 and G(2, n) = 0 for n ≥ 3. For m = 3 we have

G(3, 0) = 3 = 2 + 1 G(3, 1) = 3 + 1− 1 = 3 G(3, 2) = 4− 1 = 3
G(3, 3) = 3− 1 = 2 G(3, 4) = 2− 1 = 1 G(3, 5) = 0 = G(3, n) for n > 5

For m = 4 the first n such that G(4, n) = 0 equals the immense value 3 ·
(
2402 653 211−1

)
.

Formally, the proof of Goodstein’s Theorem uses transfinite induction over the count-
able well-ordered set of all ordinal numbers less than the ordinal

ε0 = ω
ωω··

·
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i.e., the first ordinal α satisfying ωα = α. However, the main idea of this proof can be
explained easily. It consists in dominating every sequence {G(m,n)}∞n=0, with m fixed,
by a sequence {Γ (m,n)}∞n=0 of ordinal numbers Γ (m,n) < ε0 such that G(m,n) ≤
Γ (m,n) and Γ (m,n) > Γ (m,n + 1) whenever Γ (m,n) > 0, for each n. Since the
set of all ordinals < ε0 is well-ordered by the relation < , it cannot contain any infinite
strictly decreasing sequence. Hence each of the sequences {Γ (m,n)}∞n=0 must eventually
stabilize at the value Γ (m,n) = 0 for some n. Then G(m,n) = 0, as well.
The ordinal number Γ (m,n) is obtained by replacing each occurrence of the term

n + 2 in the hereditary base n + 2 expansion of the number G(m,n) by the ordinal ω.
In the particular case m = 29 we have

G(m, 0) = 22
2
+ 22+1 + 22 + 1 < ωωω

+ ωω+1 + ωω + 1 = Γ (m, 0)

G(m, 1) = 33
3
+ 33+1 + 33 < ωωω

+ ωω+1 + ωω = Γ (m, 1)

G(m, 2) = 44
4
+44+1+3·43+3·42+3·4+3 < ωωω

+ωω+1+3·ω3+3·ω2+3·ω+3 = Γ (m, 2)

G(m, 3) = 55
5
+55+1+3·53+3·52+3·5+2 < ωωω

+ωω+1+3·ω3+3·ω2+3·ω+2 = Γ (m, 3)

G(m, 4) = 66
6
+66+1+3·63+3·62+3·6+1 < ωωω

+ωω+1+3·ω3+3·ω2+3·ω+1 = Γ (m, 4)

G(m, 5) = 77
7
+77+1+3 ·73+3 ·72+3 ·7 < ωωω

+ωω+1+3 ·ω3+3 ·ω2+3 ·ω = Γ (m, 5)
. . . . . .

Then the sequence of ordinals

Γ (m, 0) = ωωω

+ ωω+1 + ωω + 1

> Γ (m, 1) = ωωω

+ ωω+1 + ωω

> Γ (m, 2) = ωωω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 3

> Γ (m, 3) = ωωω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 2

> Γ (m, 4) = ωωω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 1

> Γ (m, 5) = ωωω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω

> . . .

cannot decrease for ever, hence it must eventually stabilize at the value Γ (m,n) = 0 for
some unimaginably huge value of n. For that n also G(m,n) = 0.

As shown by J. Paris and L. Kirby, Goodstein’s Theorem cannot be proved just by
means of the Peano Arithmetic alone.

Paris-Kirby Theorem [1982]. In PA it is provable that Goodstein’s Theorem implies
the consistency statement Cons(PA). As a consequence, if PA is consistent then Good-
stein’s Theorem is not provable in PA.

On the other hand, for any fixed m ∈ N, the existential statement (∃ y)(G(m, y) = 0)
is provable in PA. We know this though already for rather small values of m we not
only do not know the precise value of such a y = n but we even do not dispose of
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any explicit proof of that statement in PA. We only know that the primitive step-by-
step computation must eventually produce the result. However, this computation will
not terminate within the existence not only of the mankind but of the entire universe.
At the same time, as an illustration of the ω-incompleteness phenomenon mentioned
in connection with Feferman’s construction, it should be realized that within PA it is
impossible to extract any general common idea out of those particular proofs and convert
them into a single proof of the universal-existential sentence (∀x)(∃ y)(G(x, y) = 0).

Philosophical Consequences

Themes for an Essay

There is a vast literature dealing with mathematical, philosophical, metaphysical and
others extra-mathematical consequences of Gödel’s Incompleteness Theorems and some
related results. Let us confine to a brief list of some traditionally inferred conclusions:

(1) Human knowledge is necessarily incomplete and we never can be sure that it is free
of contradictions.

(2) Human knowledge cannot be reduced to any formal system. By realizing the in-
completeness phenomena inherent for such systems we are capable to transcend
their limitations.

(3) Computers can compute and prove just within the scope of some formal system.
Humans, however, are able to seize and reveal some truths unprovable within any
formal system. It follows that human brain— in spite of the fact that with re-
spect to some parameters (as, e.g., the speed of computation) it is far behind the
computers— still possesses some capabilities making it superior to any computer.

It is extremely interesting to present some Gödel’s ideas upon these issues here. Gödel
namely went a step farther beyond (3). According to him, we all probably agree that
computers can compute and prove just within the scope of some formal system given in
advance. Similarly, the activity of human brain can in principle be simulated by certain
computer (though we do not dispose of such computers at present). However, human
beings are capable of viewing or grasping even some truths unprovable within any formal
system. It follows that human mind or human intellect or human spirit, however we call
it, is endowed not only with some capabilities which make it superior to any computer
but also with some faculties which cannot be explained as a mere manifestation of the
activity and functioning of human brain.1

Try to ponder over the above quoted conclusions and opinions. To which degree you
agree or disagree with any of them and why? To which degree can the above conclusions
be justified by the incompleteness results we have been dealing with? Discuss those
points and try to make them more precise, finally arriving at some formulations you can
agree with. To which degree follow your conclusions from the results of Gödel, Rosser,
Tarski, Church and Turing?

1Freely quoted according to Hao Wang [9].
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