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Main characters

Kurt Gödel David Hilbert

(1906 – 1978) (1862 – 1943)
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“Mythical” interpretations of

Gödel’s Incompleteness Theorems

• Human knowledge is inevitably incomplete.

• Human knowledge cannot be enclosed within any formal system given
in advance.

• Human intellect, due to its capability of reflection, is superior to what-
ever computer.

• It cannot be guaranteed in advance that our accounts will not lead to a
logical contradiction.

•We never can be absolutely sure that mathematics is free of contra-
dictions.
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Bare fact

Gödel’s Incompleteness Theorems

prove the impossibility to carry out

Hilbert’s Program in its original form.
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The popular myth widely spread

(even among mathematicians)

• Hilbert’s Program of formalization of mathematics should have trans-
formed mathematics into a mere game with symbols according to certain
formal rules, deprived of any meaning, and that way to eliminate the
need of creative human activity from it.

• Thanks to Gödel we can state with satisfaction that this näıve,
dryasdust and necrophilic Hilbert’s aim failed, so that we,
creative mathematicians, are and for ever will be indispensable
for the progress of human thought.
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What will follow?

• Circumstances of and the reasons for the rise of Hilbert’s Program

• Goals of Hilbert’s Program

• Formulation of Gödel’s Theorems and basic ideas of their proof

• The relation of Gödel’s Theorems and Hilbert’s Program
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The unity of mathematics

In modern period the inner unity of mathematics is strongly perceived as a
consequence of several discoveries:

• Descart’s discovery of the co-ordinate system, unifying algebra and
analysis on one hand and geometry on the other (1637).

• The discovery and elaboration of infinitesimal calculus, enabling to grasp
the motion and formulate physical laws by mathematical means, as well
as to master complex geometrical formations by elementary ones
(Newton, Leibniz, Euler, Laplace, Lagrange, Hamilton, Gauss, Cauchy,. . .
— approx. 1670–1830).

? However, the use of infinitesimal and infinitely large magnitudes
frequently causes difficulties — the attempts to formulate rigorous
rules “what is allowed and what is not” failed.

• Riemann’s (1854) and Klein’s (1872) unifying view upon various types
of geometries (Euclid, Gauss, Bolyai, Lobachevski, Cayley,. . . ).

There grows the need to guarantee this manifested and perceived unity of
mathematics an “institutionalized” form.
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Reasons for the acceptance of Cantor’s set theory and

reconstruction of mathematics within the universe of sets

at the turn of the 19th and 20th century

• Set theory provides the entire mathematics with a universal language
and, in the universe of sets, it grants all mathematical branches a gener-
ous space for presenting, modeling and/or set-theoretical reconstruction
of all domains of objects studied by them up to that time.

? According to Hilbert: A paradise created for us by Cantor.

• Troubles and paradoxes of the original infinitesimal calculus, caused by
the use of infinitely small and infinitely big magnitudes, definitively(?)
overcome by Weierstrass (approx. 1850).

? Mathematical analysis based on the notion of limit (εδ-analysis).

• The set-theoretical models of real numbers, constructed by Cantor and
Dedekind (approx. 1870–1875) grant a solid ground for the εδ-analysis.
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What’s the price?

• For the exclusion of infinitesimals and infinitely big quantities one has
to pay by the acceptance of the actually infinite sets.

? Even individual real numbers are modeled as actually infinite sets of
rational numbers.

• The prevalent conception of infinity up to that time was namely the
potential infinity.

• Formulation of analysis in the language of limits and εδ seemingly
returns to the original, potential conception:

? “(∀ ε)(∃ δ)(...)” evokes the illusion of a process.
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Crisis of set theory and the foundations of mathematics

caused by the discovery of paradoxes

• Some classical paradoxes, known already from antique times (as, e.g., the
Liar’s Paradox ), as well as some recent paradoxes can be reproduced
both within Cantor’s set theory and within Frege’s logical system of
arithmetic (Begriffsschrift).

• Here, however, they turn into logical contradictions.

? Their discovery in the end of the 19th century causes a shocking effect.

• The “principal offender” is Cantor’s näıve scheme of comprehension :

? For any property P (x) one can form the set {x | P (x)}.
• For instance, for Russel’s set R = {x | x /∈ x} we have

R ∈ R ⇔ R /∈ R — a contradiction.

? This is the set-theoretical version of Liar’s Paradox :

“This sentence is not true.”

• On one hand, there arises a belief that the paradoxes can be avoided and
overcome, on the other hand, there are concerns that the actually infinite
sets inevitably cause analogous problems as once did the infinitesimal
and infinitely big quantities.
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Proposed ways out

• Logicism, i.e., the reconstruction of mathematics as a part of logic.

• Russell and Whitehead in Principia Mathematica (1910–13),
building on Frege’s ideas:

? Restriction of the comprehension scheme within the theory of types.
? Latter on, Quine in New Foundations , for stratified formulas P (x),

only.

• Zermelo’s axiomatic system of Cantor’s set theory (1908),
later on extended by Fraenkel (ZF and ZFC respectively, i.e.,
ZF + Axiom of Choice)

? restriction of the comprehension scheme just to {x ∈ A | P (x)}
for any set-theoretical formula P (x) and a set A given in advance
(three exceptions: axioms of pair, union and power set).
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Negative reactions

• Rejection of actual infinity (Poincaré).

• In radical form intuitionism (Brouwer 1908-10).

• Casting doubt upon some laws of classical logic:

? the law of the excluded middle A ∨ ¬A;

? the law of the double negation ¬¬A⇒ A;

? the quantifier rule ¬(∀x)¬P (x)⇒ (∃x)P (x).

• Rejection of the axiom of choice and of non-constructive existential
proofs in general.

• Danger of a drastic reduction of classical mathematics.
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A bit of philosophy

How is it like indeed? Do there exist actually infinite sets or not?

• Hilbert admits that the actual infinity is not realized by any grouping
of objects in the real world.

However, that’s not the point!

• Owing mainly to the quantum mechanics, Hilbert is aware that even
in physics by far not all theoretical constructions have to directly corre-
spond to real objects or phenomena.

• In mathematics this has been clear for long: e.g., zero and negative
integers, imaginary numbers, improper points and the improper line in
projective geometry, etc.

? Intuitive insights usually arise later on (if at all).

• Thus from the mathematical point of view that question makes no sense
and the controversies it gave rise to are idle!

• The philosophical thesis behind this conception: In mathematics

existence = consistency (i.e., the absence of logical contradiction).
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Correct questions

• Is the abstract idea of the actual mathematical infinity useful?

Yes, for sure!

• Is it possible to grasp the infinite sets within a consistent system of
thought?

That’s problematic, nevertheless, we believe that it is possible.

However, namely this requires a proof !
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Facing the challenge: Hilbert’s Program

• Hilbert’s Program is a serious attempt to find for mathematics a way
out from the crisis caused by the discovery of paradoxes and, at the same
time, a defense of set theory, classical logic and mathematics based on
them against the attack from the intuitionistic position.

• The goal is to elaborate such an axiomatic system of set theory which
would make possible to incorporate the “whole” of mathematics, and to
prove its consistency and completeness by strictly finitistic methods,
i.e., by means which even the intuitionists would have to accept.

• There’s a hope that the Zermelo-Fraenkel axiomatic system ZF, maybe
extended by the axiom of choice and, perhaps, by some additional prop-
erly designed axioms, already satisfies these requirements.
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Consistency

• Consistency of a first order theory T means:

It cannot happen that for some sentence (formula without free variables)
A in the language of T both A and its negation ¬A were provable in T .

• The contradictions based on the known paradoxes can be reproduced
neither in Principia Mathematica by Russell and Whitehead nor in
the Zermelo-Frankel axiomatic system.

• Unfortunately, that’s not enough:

? It is necessary to present a proof of consistency, i.e., to prove that
in the relevant axiomatic system no contradictions can occur.
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How all this can be done?

• For some theories it suffices to present a finite model.

• However, for theories with aspiration to play the role of the foundations
of mathematics this possibility is out of the question.

• Therefore, we have to look more closely at the nature of mathematical
proofs.

• The objects of classical mathematics are numbers, functions, geometrical
formations, algebraic expressions, vector fields, etc., as well as their
properties and relations between them — but not the proofs themselves.

• Proofs are expressions of processes of thought by means of which we
establish some statements, properties or relations as logically necessary
consequences of some other statements, properties or relations (as a rule
more elementary or more evident ones).
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Formalization

•Mathematical theories can be rewritten (some in a more, some in a less
natural way) in a symbolic language (Frege).

• Formulas, i.e., the written expressions of statements, properties and
relations, are “just” finite strings of symbols formed according to some
combinatorial rules.

• Formal proofs can be written as finite sequences of formulas fulfilling
some mechanically verifiable conditions.

• Proof theory or metamathematics is already a branch of mathematics
dealing with formal proofs.

• Consistency of a formal theory T now means:
In T there do not exist two proofs (i.e., certain finite sequences of
formulas) one of which terminates by some sentence A and the other by
its negation ¬A.

To prove the consistency of some formal theory T finally becomes a well
formulated mathematical problem.
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Completeness

• Completeness of a first order theory T means:

For any sentence A in the language of T exactly one of the statements
A, ¬A is provable in T .

• To prove the completeness of a formal theory T is once again a well
defined metamathematical task.

• In mathematics formulated within some complete axiomatic system of
its foundations the law of the excluded middle would hold true even
in the intuitionistic sense.
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The finitistic requirement...

• The intuitionists must be defeated by their own arms!

• That’s why the proofs of consistency and completeness of the theory
forming the foundations of mathematics (as well as all the means em-
ployed in metamathematics) have to comply with the following finitistic
requirement :

? They must not make use of infinite sets, the law of excluded middle,
the axiom of choice, non-effective existential proofs, etc., i.e., the
means which they first have to justify before using them.

• The finitistic position (Hilbert, Herbrand) makes the intuitionistic
requirement of constructiveness more precise and even more strict.
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... and its consequences

• A finitistic and constructive proof of completeness requires in fact the
elaboration of a universal decision procedure (algorithm), hence it has
to include the proof of decidability of the relevant axiomatic theory,
which should play the role of the foundations of mathematics.

• Hilbert himself is firmly convinced in the solvability (decidability) of any
sufficiently clearly formulated mathematical problem.

• An additional requirement is the proof of conservativeness of non-
effective infinitistic methods:

Everything what can be proved using them, can be proved without
them, as well, just for the cost of longer and more complicated proofs.

• That way the reason for forbidding them would be removed:

That would now appear as a stubborn reactionary tendency, refusing on
irrational grounds the use of new, more efficient tools of set-theoretical
mathematics.
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Gödel’s Completeness Theorem (1929–30)

• Gödel works within the guidelines of Hilbert’s Program.

• In his dissertation he proves the Completeness Theorem for the first
order logic (predicate calculus):

Every consistent first order theory has some model.

• Logical (necessary) consequences of axioms of a first order theory are
exactly those statements in its language, which can be derived from
these axioms by formal proofs.

• Closing the process of reflection of mathematical thought in mathemat-
ical logic as a branch of mathematics.

• Bonus — Compactness Theorem:

If every finite family of axioms of a theory T has a model,
then T as a whole also has a model.

? Strong tool enabling to construct models of first order theories,
frequently “out of nothing”.

•Minor flaw:

? The proof of the Completeness Theorem does not (and cannot)
comply with the finitistic requirement.
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Technical preconditions of Gödel’s Incompleteness Theorems

• Transition from formalizaton to arithmetization of provability.

• Assignment of numerical codes to symbols and expressions
(i.e., finite strings of symbols) of certain formal language.

• Description of properties of expressions

? “to be a formula”,

? “to be an axiom of given theory”,

? “to be a proof within that theory”,

etc., in terms of certain arithmetical properties of their codes.

• Fully in the spirit of Leibniz’s project

? characteristica universalis,

? calculus ratiocinator,

? ars iudicandi.
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To what do Gödel’s Incompleteness Theorems apply?

To any first order theory T , such that

• T is recursively axiomatizable, i.e., its axioms form a finite list
or at least can be effectively recognized;

• Peano arithmetics (PA), i.e., the basic theory of addition and
multiplication of natural numbers, can be interpreted in T .

Axioms of PA

0 + 1 = 1, 0 6= x + 1, x + 1 = y + 1 ⇒ x = y;

x + 0 = x, x + (y + 1) = (x + y) + 1;

x · 0 = 0, x · (y + 1) = (x · y) + x.

Scheme of mathematical induction :[
F (0) ∧ (∀x)

(
F (x)⇒ F (x + 1)

)]
⇒ (∀x)F (x).

where F (x) is an arbitrary formula in the language of PA.
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Using Gödel’s coding it is possible...

• ... to line up formulas with at most one free variable x,
expressing properties of natural numbers, into a sequence

F0(x), F1(x), F2(x), . . . , Fn(x), . . . ;

• ... to line up proofs in the theory T into a sequence

∆0, ∆1, ∆2, . . . , ∆k, . . . ;

• ... to define in T an arithmetical and effectively decidable relation
P (x, y, z) such that for any natural numbers k, m, n the following
condition is satisfied:

∆k is a proof of the statement Fn(m) in the theory T

if and only if P (m,n, k) holds.
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Gödel’s shift of Liar’s Paradox

• Let g be the number of the formula ¬(∃ z)P (x, x, z);

then Fg(g) is the formula ¬(∃ z)P (g, g, z).

• The sentence Fg(g) is “just” an arithmetical statement about natural
numbers, similarly as, e.g.:

“The equation x3+y3+z3 = 33 has no solution in positive integers.”

• On the other hand, it codes the statement:

“There does not exist any proof of the sentence Fg(g).”

• That way Gödel’s statement Fg(g) can be identified with the self-referential
statement:

“This statement is unprovable in T .”

Or:

“I am unprovable in T .”
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Gödel’s statement is necessarily true...

... more precisely, it is the case if T is arithmetically correct, i.e.,
all statements about natural numbers provable in T are true.

• Namely, if Gödel’s statement Fg(g) were not true, then it would be
provable in T .

• That way Fg(g) would be an arithmetical statement provable in T .

• However, all arithmetical statements provable in T are true.

• That contradicts our starting assumption that Gödel’s statement is not
true.

• Hence Gödel’s statement Fg(g) is true but unprovable in T .
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Preliminary version of Gödel’s First Incompleteness Theorem

In every recursively axiomatizable arithmetically correct first order
theory T there are true statements about natural numbers which are
not provable in T . (Namely Gödel’s statement Fg(g) is such.)

Objection:

•We just have proved that Gödel’s statement is true.

• Hence it is provable and, at the same time, what it states is true, thus
it is unprovable.

• That way we once again obtained a contradiction, very similar to Russell’s
version of Liar’s Paradox.

Response:

• This time it is not a contradiction within the formal system of the
theory T .

• Our “proof” of the truth of Gödel’s statement is namely not a proof in
T but just an informal argumentation showing that Gödel’s statement
is intuitively true.
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Gödel’s First Incompleteness Theorem

Let T be any recursively axiomatizable first order theory such that PA
is interpretable in T .

• If T is consistent then the statement Fg(g) is not provable in T .

• If T is additionally ω-consistent, then neither the statement ¬Fg(g)
is provable in T .

In that case T is incomplete.

• ω-consistency is a technical condition, stronger than mere consistency.

• Rosser (1936) proved that we can manage without this assumption.

? He constructed an example of a sentence B, such that already from
the assumption of consistency of the theory T it follows that both B
and ¬B are unprovable in T .

? Rosser’s sentence B codes the self-referential statement:

“If I am provable in T , then among the proofs, preceding my proof
in the sequence ∆0, ∆1, ∆2, . . . , there is a proof of my negation.”
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Unprovability of consistency

• If s is the number of the formula x 6= x,

then Fs(0) is the statement 0 6= 0.

• Obviously, T is consistent if and only if the statement Fs(0), i.e., 0 6= 0,
is not provable in T .

• That way the arithmetical sentence ¬(∃ z)P (0, s, z),

which we abbreviate as Cons(T ),

codes the statement of consistency of the theory T .

• The implication Cons(T )⇒ Fg(g) is provable in T .

• Hence, if the sentence Cons(T ) were provable in T ,

then so would be Gödel’s statement Fg(g),

contradicting Gödel’s First Incompleteness Theorem.
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Gödel’s Second Incompleteness Theorem

Let T be any recursively axiomatizable first order theory such that PA
is interpretable in T . If T is consistent, then the sentence Cons(T ),
coding the statement of consistency of T , is not provable in T .

• That way the sentence Cons(T ) (together with Gödel’s statement Fg(g))
is another example of a true arithmetical proposition unprovable in T .

• In ZF, but even in considerably weaker theories, it is possible to prove
the consistency of PA:

? Gentzen’s proof of consistency of PA using transfinite induction over
ordinals < ε0 = ωω

ω...

(1936);

? Gödel’s proof using recursive functionals (1958).

• Infinitary methods of set theory, but even some much weaker ones, are
not conservative extensions of finitistic methods (the latter ones can be
formalized within PA).
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Next following results

Tarski’s Theorem on Undefinability of Truth

(more precisely, of the satisfaction relation)

There does not exist any formula S(x, y) in the language of PA, such
that, for any natural numbers m, n, the statement Fn(m) is true if and
only if S(m,n) holds.

Church-Turing Undecidability Theorem

Peano arithmetic PA, as well as the predicate calculus itself,
are algorithmically undecidable.

• The same is true for any consistent recursively axiomatizable theory T
in which PA can be be interpreted.
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Failure or vindication of Hilbert’s Program?

The above results establish the impossibility to carry out Hilbert’s Program
in every one of its aims.

• However, it would be a mistake to conclude that Hilbert’s Program was
just a näıve dreaming to which Gödel delivered the deserved lesson.

• Just the opposite, Hilbert formulated fundamental questions, and in
that time he had good reasons to expect the answers he anticipated.

•Without his clear-cut formulated questions we most probably would not
learn the surprising responses so soon.

• His program gave rise to Metamathematics or Proof Theory as a new
independent and fruitful branch of mathematics, which marked signifi-
cantly the development of some branches of theoretical computer science
(theory of formal languages, recursive functions and computability
theory, program analysis, automatical theorem proving...).
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Is Arithmetic or Set Theory (in)consistent?

• Gödel’s Second Incompleteness Theorem does not state, that it is impos-
sible to prove the consistency of Peano Arithmetic — it is just impossible
to prove it within PA itself.

? Recall the proofs of consistency of PA by Gentzen (1936) and by
Gödel himself (1958).

• And the more, Gödel’s Theorems do not imply that arithmetic, or even
mathematics as a whole, were inconsistent.

• On the other hand, the possibility of a contradiction in some axiomatic
system of set theory, like ZFC, NBG (von Neumann-Gödel-Bernays),
KM (Kelly-Morse), extended by, say, certain strong axioms of existence
of big cardinals cannot be completely excluded a priori.

• However, the attempts to infer from Gödel’s Theorems some too far
reaching conclusions of extra-mathematical character purport even more
problematically.
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