Pontryagin-van Kampen Duality and Fourier Transform in Hyperfinite Ambience

Gordon’s Conjectures

Pavol Zlatoš

Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

December 2012
Contents

1 Pontryagin-van Kampen Duality
1 Pontryagin-van Kampen Duality

2 Fourier Transform

Contents
Contents

1 Pontryagin-van Kampen Duality

2 Fourier Transform

3 Nonstandard Analysis
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pontryagin-van Kampen Duality</td>
</tr>
<tr>
<td>2</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>3</td>
<td>Nonstandard Analysis</td>
</tr>
<tr>
<td>4</td>
<td>Pontryagin-van Kampen Duality and Fourier Transform in Hyperfinite Ambience</td>
</tr>
</tbody>
</table>
Pontryagin-van Kampen Duality

Fourier Transform

Nonstandard Analysis

PvK Duality & FT in HF Ambience

\textit{Pontryagin-van Kampen Duality 1}
Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)
Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)

$\mathbb{T} = \{ c \in \mathbb{C}; |c| = 1 \}$ – the (compact) group of complex units
Pontryagin-van Kampen Duality

Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)

$\mathbb{T} = \{ c \in \mathbb{C}; \ |c| = 1 \}$ – the (compact) group of complex units

$\hat{G} = \text{Hom}(G, \mathbb{T}) \cap C(G)$

all continuous *characters* (homomorphisms) $G \to \mathbb{T}$
Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)

$\mathbb{T} = \{c \in \mathbb{C}; |c| = 1\}$ – the (compact) group of complex units

$\hat{G} = \text{Hom}(G, \mathbb{T}) \cap C(G)$

all continuous *characters* (homomorphisms) $G \rightarrow \mathbb{T}$

pointwise multiplication in \hat{G}:
Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)

$\mathbb{T} = \{c \in \mathbb{C}; \ |c| = 1\}$ – the (compact) group of complex units

$\hat{G} = \text{Hom}(G, \mathbb{T}) \cap C(G)$

all continuous characters (homomorphisms) $G \to \mathbb{T}$

pointwise multiplication in \hat{G}:

$(\gamma \cdot \chi)(x) = \gamma(x) \chi(x)$ for $\gamma, \chi \in \hat{G}, x \in G$
G = (G, +, τ) is a locally compact abelian group (LCA group)

\[\mathbb{T} = \{ c \in \mathbb{C}; \ |c| = 1 \} \] – the (compact) group of complex units

\[\hat{G} = \text{Hom}(G, \mathbb{T}) \cap C(G) \]

all continuous characters (homomorphisms) \(G \rightarrow \mathbb{T} \)

pointwise multiplication in \(\hat{G} \):

\[(\gamma \cdot \chi)(x) = \gamma(x) \chi(x) \quad \text{for } \gamma, \chi \in \hat{G}, \ x \in G \]

Bohr sets in \(\hat{G} \), for \(A \subseteq G \), \(0 < \alpha \leq \pi \),
Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)

$\mathbb{T} = \{ c \in \mathbb{C}; \ |c| = 1 \}$ – the (compact) group of complex units

$\hat{G} = \text{Hom}(G, \mathbb{T}) \cap C(G)$

all continuous characters (homomorphisms) $G \to \mathbb{T}$

pointwise multiplication in \hat{G}:

$$(\gamma \cdot \chi)(x) = \gamma(x) \chi(x) \quad \text{for } \gamma, \chi \in \hat{G}, \ x \in G$$

Bohr sets in \hat{G}, for $A \subseteq G$, $0 < \alpha \leq \pi$,

$\mathcal{B}_\alpha(A) = \{ \chi \in \hat{G}; \ \forall a \in A : |\text{arg} \, \chi(a)| \leq \alpha \}$
Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)

$\mathbb{T} = \{ c \in \mathbb{C}; \ |c| = 1 \}$ – the (compact) group of complex units

$\hat{G} = \text{Hom}(G, \mathbb{T}) \cap C(G)$

all continuous characters (homomorphisms) $G \rightarrow \mathbb{T}$

pointwise multiplication in \hat{G}:

$$(\gamma \cdot \chi)(x) = \gamma(x) \chi(x) \quad \text{for} \ \gamma, \chi \in \hat{G}, \ x \in G$$

Bohr sets in \hat{G}, for $A \subseteq G$, $0 < \alpha \leq \pi$,

$\mathcal{B}_\alpha(A) = \{ \chi \in \hat{G}; \ \forall a \in A : |\arg \chi(a)| \leq \alpha \}$

similarly, for $\Gamma \subseteq \hat{G}$, we have Bohr sets in G
Pontryagin-van Kampen Duality 1

$G = (G, +, \tau)$ is a locally compact abelian group (LCA group)

$\mathbb{T} = \{ c \in \mathbb{C}; \ |c| = 1 \}$ – the (compact) group of complex units

$\hat{G} = \text{Hom}(G, \mathbb{T}) \cap C(G)$

all continuous characters (homomorphisms) $G \to \mathbb{T}$

pointwise multiplication in \hat{G}:

$$(\gamma \cdot \chi)(x) = \gamma(x) \chi(x) \quad \text{for } \gamma, \chi \in \hat{G}, \ x \in G$$

Bohr sets in \hat{G}, for $A \subseteq G$, $0 < \alpha \leq \pi$,

$${\mathcal{B}}_\alpha(A) = \{ \chi \in \hat{G}; \ \forall a \in A : |\arg \chi(a)| \leq \alpha \}$$

similarly, for $\Gamma \subseteq \hat{G}$, we have Bohr sets in G

$${\mathcal{B}}_\alpha(\Gamma) = \{ x \in G; \ \forall \gamma \in \Gamma : |\arg \gamma(x)| \leq \alpha \}$$
Pontryagin-van Kampen Duality

Fourier Transform

Nonstandard Analysis

PvK Duality & FT in HF Ambience

Pontryagin-van Kampen Duality 2

\(\hat{G} \) is an LCA group with pointwise multiplication and compact-open topology – dual group of \(G \).

\[\{ B_\alpha(A); 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < \frac{2\pi}{3} \} \]

Examples.

\(\hat{G} \times H \cong \hat{G} \times \hat{H} \)

\(\hat{\mathbb{Z}}_n \cong \mathbb{Z}_n \):

\(a \in \mathbb{Z}_n \) corresponds to the character \(k \mapsto e^{2\pi i ak/n} \).

\(\hat{G} \cong G \) for each finite abelian group \(G \).

\(\hat{T} \cong \mathbb{Z} \):

\(c \in \mathbb{T} \) corresponds to the character \(n \mapsto c^n \).

\(\hat{\mathbb{R}} \cong \mathbb{R} \):

\(a \in \mathbb{R} \) corresponds to the character \(t \mapsto e^{iat} \).
Pontryagin-van Kampen Duality 2

- \(\hat{G} \) is an **LCA group** with pointwise multiplication and compact-open topology – **dual group** of \(G \)
Pontryagin-van Kampen Duality 2

- \hat{G} is an LCA group with pointwise multiplication and compact-open topology – dual group of G
- neighborhood bases of the trivial character $1_G \in \hat{G}$
Pontryagin-van Kampen Duality

Let \(\hat{G} \) be an LCA group with pointwise multiplication and compact-open topology – dual group of \(G \).

- Neighborhood bases of the trivial character \(1_G \in \hat{G} \).
Pontryagin-van Kampen Duality

\[\hat{G} \] is an LCA group with pointwise multiplication and compact-open topology – dual group of \(G \).

- neighborhood bases of the trivial character \(1_G \in \hat{G} \):
 \[\{ \mathcal{B}_\alpha(A); \ 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < 2\pi/3 \} \]
Pontryagin-van Kampen Duality 2

- \hat{G} is an LCA group with pointwise multiplication and compact-open topology – dual group of G
- neighborhood bases of the trivial character $1_G \in \hat{G}$
 \[\{ B_\alpha(A); \ 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < 2\pi/3 \} \]

Examples.
- $\hat{G} \times \hat{H} \cong \hat{G} \times \hat{H}$
Pontryagin-van Kampen Duality 2

- \(\hat{G} \) is an LCA group with pointwise multiplication and compact-open topology – **dual group** of \(G \)
- neighborhood bases of the trivial character \(1_G \in \hat{G} \)
 \[\{ \mathcal{B}_\alpha(A); \ 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < 2\pi/3 \} \]

Examples.
- \(\widehat{G \times H} \cong \hat{G} \times \hat{H} \)
- \(\hat{\mathbb{Z}}_n \cong \mathbb{Z}_n \): \(a \in \mathbb{Z}_n \) corresponds to the character
 \[k \mapsto e^{2\pi iak/n} \]
Pontryagin-van Kampen Duality 2

- \(\hat{G} \) is an \textbf{LCA group} with pointwise multiplication and compact-open topology – \textbf{dual group} of \(G \)
- neighborhood bases of the trivial character \(1_G \in \hat{G} \)
 \[\{ B_\alpha(A); \, 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < \frac{2\pi}{3} \} \]

Examples.
- \(\hat{G} \times H \cong \hat{G} \times \hat{H} \)
- \(\hat{\mathbb{Z}}_n \cong \mathbb{Z}_n : \, a \in \mathbb{Z}_n \) corresponds to the character \(k \mapsto e^{2\pi i ak/n} \)
- \(\hat{G} \cong G \) for each finite abelian group \(G \)
Pontryagin-van Kampen Duality 2

- \(\hat{G} \) is an LCA group with pointwise multiplication and compact-open topology – dual group of \(G \)
- neighborhood bases of the trivial character \(1_G \in \hat{G} \)
 \(\{ B_\alpha(A); \ 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < 2\pi/3 \} \)

Examples.

- \(\hat{G} \times \hat{H} \cong \hat{G} \times \hat{H} \)
- \(\hat{\mathbb{Z}}_n \cong \mathbb{Z}_n; \ a \in \mathbb{Z}_n \) corresponds to the character \(k \mapsto e^{2\pi i ak/n} \)
- \(\hat{G} \cong G \) for each finite abelian group \(G \)
- \(\hat{\mathbb{Z}} \cong \mathbb{T}; \ c \in \mathbb{T} \) corresponds to the character \(n \mapsto c^n \)
Pontryagin-van Kampen Duality 2

- \hat{G} is an **LCA group** with pointwise multiplication and compact-open topology – **dual group** of G
- neighborhood bases of the trivial character $1_G \in \hat{G}$
 $$\{ \mathcal{B}_\alpha(A); \ 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < 2\pi/3 \}$$

Examples.
- $\hat{G} \times \hat{H} \cong \hat{G} \times \hat{H}$
- $\hat{\mathbb{Z}}_n \cong \mathbb{Z}_n$: $a \in \mathbb{Z}_n$ corresponds to the character $k \mapsto e^{2\pi i a k/n}$
- $\hat{\mathbb{G}} \cong G$ for each finite abelian group G
- $\hat{\mathbb{Z}} \cong \mathbb{T}$: $c \in \mathbb{T}$ corresponds to the character $n \mapsto c^n$
- $\hat{\mathbb{T}} \cong \mathbb{Z}$: $n \in \mathbb{Z}$ corresponds to the character $c \mapsto c^n$
Pontryagin-van Kampen Duality 2

- \(\hat{G} \) is an LCA group with pointwise multiplication and compact-open topology – dual group of \(G \)
- neighborhood bases of the trivial character \(1_G \in \hat{G} \)
 \[\{ B_\alpha(A); \ 0 \in A \subseteq G \text{ is compact and } 0 < \alpha < 2\pi/3 \} \]

Examples.
- \(\hat{G} \times \hat{H} \cong \hat{G} \times \hat{H} \)
- \(\hat{\mathbb{Z}}_n \cong \mathbb{Z}_n \): \(a \in \mathbb{Z}_n \) corresponds to the character \(k \mapsto e^{2\pi i ak/n} \)
- \(\hat{G} \cong G \) for each finite abelian group \(G \)
- \(\hat{\mathbb{Z}} \cong \mathbb{T} \): \(c \in \mathbb{T} \) corresponds to the character \(n \mapsto c^n \)
- \(\hat{\mathbb{T}} \cong \mathbb{Z} \): \(n \in \mathbb{Z} \) corresponds to the character \(c \mapsto c^n \)
- \(\hat{\mathbb{R}} \cong \mathbb{R} \): \(a \in \mathbb{R} \) corresponds to the character \(t \mapsto e^{iat} \)
Pontryagin-van Kampen Duality

Pontryagin-van Kampen Duality 3

Pontryagin-van Kampen Duality

Fourier Transform

Nonstandard Analysis

PvK Duality & FT in HF Ambience

Pontryagin-van Kampen Duality

The natural mapping
\[G \to \hat{\hat{G}}, \]
assigning to \(x \in G \) the character \(\hat{x} : \hat{\hat{G}} \to \mathbb{T} \), given by
\[\hat{x}(\gamma) = \gamma(x) \]
for \(\gamma \in \hat{\hat{G}} \), is isomorphism of topological groups
\[G \cong \hat{\hat{G}}. \]

Consequences.

• \(G \) is discrete (compact) iff \(\hat{\hat{G}} \) is compact (discrete)

• \(G \) is metrizable (\(\sigma \)-compact) iff \(\hat{\hat{G}} \) is \(\sigma \)-compact (metrizable)

• Subgroup \(D \leq \hat{\hat{G}} \) is dense in \(\hat{\hat{G}} \) iff the characters \(\gamma \in D \) separate points in \(G \)

• \(G \) is connected iff \(\hat{\hat{G}} \) has no nontrivial compact subgroups

• \(G \) is totally disconnected iff each \(\gamma \in \hat{\hat{G}} \) generates a relatively compact subgroup
Pontryagin-van Kampen Duality theorem.
Pontryagin-van Kampen Duality 3

Pontryagin-van Kampen duality theorem.

The natural mapping \(G \rightarrow \hat{G} \), assigning to \(x \in G \) the character \(x : \hat{G} \rightarrow \mathbb{T} \), given by \(x(\gamma) = \gamma(x) \) for \(\gamma \in \hat{G} \), is isomorphism of topological groups \(G \cong \hat{G} \).
Pontryagin-van Kampen Duality 3

Pontryagin-van Kampen duality theorem.
The natural mapping $G \to \hat{G}$, assigning to $x \in G$ the character $x : \hat{G} \to \mathbb{T}$, given by $x(\gamma) = \gamma(x)$ for $\gamma \in \hat{G}$, is isomorphism of topological groups $G \cong \hat{G}$.

Consequences.

- G is discrete (compact) iff \hat{G} is compact (discrete)
Pontryagin-van Kampen Duality 3

Pontryagin-van Kampen duality theorem.

The natural mapping $G \to \hat{G}$, assigning to $x \in G$ the character $x : \hat{G} \to \mathbb{T}$, given by $x(\gamma) = \gamma(x)$ for $\gamma \in \hat{G}$, is isomorphism of topological groups $G \cong \hat{G}$.

Consequences.

- G is discrete (compact) iff \hat{G} is compact (discrete)
- G is metrizable (σ-compact) iff \hat{G} is σ-compact (metrizable)
Pontryagin-van Kampen duality theorem.

The natural mapping \(G \to \hat{G} \), assigning to \(x \in G \) the character \(x : \hat{G} \to \mathbb{T} \), given by \(x(\gamma) = \gamma(x) \) for \(\gamma \in \hat{G} \), is isomorphism of topological groups \(G \cong \hat{G} \).

Consequences.

- \(G \) is discrete (compact) iff \(\hat{G} \) is compact (discrete)
- \(G \) is metrizable (\(\sigma \)-compact) iff \(\hat{G} \) is \(\sigma \)-compact (metrizable)
- Subgroup \(D \leq \hat{G} \) is dense in \(\hat{G} \) iff the characters \(\gamma \in D \) separate points in \(G \)
Pontryagin-van Kampen Duality theorem.

The natural mapping $G \to \hat{G}$, assigning to $x \in G$ the character $x : \hat{G} \to \mathbb{T}$, given by $x(\gamma) = \gamma(x)$ for $\gamma \in \hat{G}$, is isomorphism of topological groups $G \cong \hat{G}$.

Consequences.

- G is discrete (compact) iff \hat{G} is compact (discrete)
- G is metrizable (σ-compact) iff \hat{G} is σ-compact (metrizable)
- Subgroup $D \leq \hat{G}$ is dense in \hat{G} iff the characters $\gamma \in D$ separate points in G
- G is connected iff \hat{G} has no nontrivial compact subgroups
Pontryagin-van Kampen duality theorem.

The natural mapping $G \rightarrow \hat{G}$, assigning to $x \in G$ the character $x : \hat{G} \rightarrow \mathbb{T}$, given by $x(\gamma) = \gamma(x)$ for $\gamma \in \hat{G}$, is isomorphism of topological groups $G \cong \hat{G}$.

Consequences.

- G is discrete (compact) iff \hat{G} is compact (discrete)
- G is metrizable (σ-compact) iff \hat{G} is σ-compact (metrizable)
- Subgroup $D \leq \hat{G}$ is dense in \hat{G} iff the characters $\gamma \in D$ separate points in G
- G is connected iff \hat{G} has no nontrivial compact subgroups
- G is totally disconnected iff each $\gamma \in \hat{G}$ generates a relatively compact subgroup
Fourier Transform 1
m_G, $m_{\hat{G}}$ denote Haar measures on G, \hat{G}, resp.
$m_G, m_{\hat{G}}$ denote Haar measures on G, \hat{G}, resp.

- \(\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x) \)
 for \(f \in L^1(G) = L^1(G, m_G), \quad \gamma \in \hat{G} \)
Fourier Transform 1

$m_G, m_{\hat{G}}$ denote Haar measures on G, \hat{G}, resp.

- $\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)$
 for $f \in L^1(G) = L^1(G, m_G), \gamma \in \hat{G}$

- \hat{f} is the Fourier transform of f,

$\| \hat{f} \|_{\infty} \leq \| f \|_1$
Fourier Transform 1

\(m_G, \ m_{\hat{G}} \) denote Haar measures on \(G, \ \hat{G} \), resp.

- \(\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x) \) for \(f \in L^1(G) = L^1(G, m_G), \ \gamma \in \hat{G} \)
- \(\hat{f} \) is the **Fourier transform** of \(f \),
m_G, $m_{\hat{G}}$ denote Haar measures on G, \hat{G}, resp.

- $\hat{f}(\gamma) = \int f \cdot \gamma \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)$ for $f \in L^1(G) = L^1(G, m_G)$, $\gamma \in \hat{G}$
- \hat{f} is the **Fourier transform** of f, $\|\hat{f}\|_\infty \leq \|f\|_1$
\(m_G, m_{\hat{G}}\) denote Haar measures on \(G, \hat{G}\), resp.

- \(\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)\)
 for \(f \in L^1(G) = L^1(G, m_G), \gamma \in \hat{G}\)
- \(\hat{f}\) is the Fourier transform of \(f\), \(\|\hat{f}\|_\infty \leq \|f\|_1\)
- \(f \mapsto \mathcal{F}(f) = \hat{f}\) defines bounded linear operator \(\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G})\)
$m_G, \ m_{\hat{G}}$ denote Haar measures on $G, \ \hat{G}$, resp.

- $\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)$
 for $f \in L^1(G) = L^1(G, m_G), \ \gamma \in \hat{G}$
- \hat{f} is the **Fourier transform** of $f, \ \|\hat{f}\|_\infty \leq \|f\|_1$
- $f \mapsto \mathcal{F}(f) = \hat{f}$ defines bounded linear operator
 $\mathcal{F} : L^1(G) \to C_0(\hat{G})$
- $\mathcal{F} = \mathcal{F}_G$ is called the **Fourier transform** on G
$m_G, m_{\hat{G}}$ denote Haar measures on G, \hat{G}, resp.

- $\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)$ for $f \in L^1(G) = L^1(G, m_G), \gamma \in \hat{G}$
- \hat{f} is the Fourier transform of f, $\|\hat{f}\|_{\infty} \leq \|f\|_1$
- $f \mapsto \mathcal{F}(f) = \hat{f}$ defines bounded linear operator
 $\mathcal{F} : L^1(G) \to C_0(\hat{G})$
- $\mathcal{F} = \mathcal{F}_G$ is called the Fourier transform on G
- $L^1(G)$ is associative algebra under convolution
\(m_G, m_{\hat{G}} \) denote *Haar measures* on \(G, \hat{G} \), resp.

- \(\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x) \)
 for \(f \in L^1(G) = L^1(G, m_G), \gamma \in \hat{G} \)
- \(\hat{f} \) is the **Fourier transform** of \(f \), \(\|\hat{f}\|_{\infty} \leq \|f\|_1 \)
- \(f \mapsto \mathcal{F}(f) = \hat{f} \) defines bounded linear operator \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) \)
- \(\mathcal{F} = \mathcal{F}_G \) is called the **Fourier transform** on \(G \)
- \(L^1(G) \) is associative algebra under convolution
$m_G, \ m_{\hat{G}}$ denote Haar measures on $G, \ \hat{G}$, resp.

- $\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)$
 for $f \in L^1(G) = L^1(G, m_G), \ \gamma \in \hat{G}$
- \hat{f} is the **Fourier transform** of f, $\|\hat{f}\|_\infty \leq \|f\|_1$
- $f \mapsto \mathcal{F}(f) = \hat{f}$ defines bounded linear operator
 $\mathcal{F} : L^1(G) \to C_0(\hat{G})$
- $\mathcal{F} = \mathcal{F}_G$ is called the **Fourier transform** on G
- $L^1(G)$ is associative algebra under convolution
 $(f \ast g)(x) = \int f(x - t) \, g(t) \, dm_G(t)$
$m_G, \ m_{\hat{G}}$ denote Haar measures on $G, \ \hat{G}$, resp.

- $\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)$
 for $f \in L^1(G) = L^1(G, m_G), \ \gamma \in \hat{G}$

- \hat{f} is the **Fourier transform** of f, $\|\hat{f}\|_\infty \leq \|f\|_1$

- $f \mapsto \mathcal{F}(f) = \hat{f}$ defines bounded linear operator
 $\mathcal{F} : L^1(G) \to C_0(\hat{G})$

- $\mathcal{F} = \mathcal{F}_G$ is called the **Fourier transform** on G

- $L^1(G)$ is associative algebra under convolution
 $(f \ast g)(x) = \int f(x-t) \, g(t) \, dm_G(t)$

- $C_0(\hat{G})$ is associative algebra under pointwise multiplication
Fourier Transform 1

\(m_G, \ m_{\hat{G}} \) denote Haar measures on \(G, \ \hat{G} \), resp.

- \(\hat{f}(\gamma) = \int f \cdot \gamma \, dm_G = \int f(x) \, \gamma(x) \, dm_G(x) \)
 for \(f \in L^1(G) = L^1(G, m_G) \), \(\gamma \in \hat{G} \)
- \(\hat{f} \) is the Fourier transform of \(f \), \(\| \hat{f} \|_\infty \leq \| f \|_1 \)
- \(f \mapsto \mathcal{F}(f) = \hat{f} \) defines bounded linear operator \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) \)
- \(\mathcal{F} = \mathcal{F}_G \) is called the Fourier transform on \(G \)
- \(L^1(G) \) is associative algebra under convolution
 \((f \ast g)(x) = \int f(x-t) \, g(t) \, dm_G(t) \)
- \(C_0(\hat{G}) \) is associative algebra under pointwise multiplication
\[m_G, \ m_{\hat{G}} \] denote *Haar measures* on \(G, \ \hat{G}, \) resp.

- \(\hat{f}(\gamma) = \int f \cdot \gamma \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x) \)
 for \(f \in L^1(G) = L^1(G, m_G), \ \gamma \in \hat{G} \)
- \(\hat{f} \) is the **Fourier transform** of \(f, \ \| \hat{f} \|_{\infty} \leq \| f \|_1 \)
- \(f \mapsto \mathcal{F}(f) = \hat{f} \) defines bounded linear operator
 \(\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G}) \)
- \(\mathcal{F} = \mathcal{F}_G \) is called the **Fourier transform** on \(G \)
- \(L^1(G) \) is associative algebra under convolution
 \((f \ast g)(x) = \int f(x - t) \, g(t) \, dm_G(t) \)
- \(C_0(\hat{G}) \) is associative algebra under pointwise multiplication
 \((\varphi \cdot \psi)(\gamma) = \varphi(\gamma) \psi(\gamma) \)
m_G, $m_{\hat{G}}$ denote *Haar measures* on G, \hat{G}, resp.

- $\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x)$
 for $f \in L^1(G) = L^1(G, m_G)$, $\gamma \in \hat{G}$
- \hat{f} is the **Fourier transform** of f, $\|\hat{f}\|_{\infty} \leq \|f\|_1$
- $f \mapsto \mathcal{F}(f) = \hat{f}$ defines bounded linear operator
 $\mathcal{F} : L^1(G) \to C_0(\hat{G})$
- $\mathcal{F} = \mathcal{F}_G$ is called the **Fourier transform** on G
- $L^1(G)$ is associative algebra under convolution
 $$(f * g)(x) = \int f(x - t) g(t) \, dm_G(t)$$
- $C_0(\hat{G})$ is associative algebra under pointwise multiplication
 $$(\varphi \cdot \psi)(\gamma) = \varphi(\gamma) \psi(\gamma)$$
- $\mathcal{F}(f \ast g) = \mathcal{F}(f) \mathcal{F}(g)$,
Fourier Transform 1

\(m_G, \ m_{\hat{G}} \) denote Haar measures on \(G, \ \hat{G} \), resp.

- \(\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x) \)
 for \(f \in L^1(G) = L^1(G, m_G) \), \(\gamma \in \hat{G} \)

- \(\hat{f} \) is the Fourier transform of \(f \), \(\| \hat{f} \|_\infty \leq \| f \|_1 \)

- \(f \mapsto \mathcal{F}(f) = \hat{f} \) defines bounded linear operator
 \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) \)

- \(\mathcal{F} = \mathcal{F}_G \) is called the Fourier transform on \(G \)

- \(L^1(G) \) is associative algebra under convolution
 \((f \ast g)(x) = \int f(x - t) \, g(t) \, dm_G(t) \)

- \(C_0(\hat{G}) \) is associative algebra under pointwise multiplication
 \((\varphi \cdot \psi)(\gamma) = \varphi(\gamma) \psi(\gamma) \)

- \(\mathcal{F}(f \ast g) = \mathcal{F}(f) \, \mathcal{F}(g) \),
Fourier Transform 1

\(m_G, \ m_{\hat{G}} \) denote *Haar measures* on \(G, \ \hat{G} \), resp.

- \(\hat{f}(\gamma) = \int f \cdot \overline{\gamma} \, dm_G = \int f(x) \overline{\gamma(x)} \, dm_G(x) \)
 for \(f \in L^1(G) = L^1(G, m_G), \ \gamma \in \hat{G} \)

- \(\hat{f} \) is the **Fourier transform** of \(f \), \(\|\hat{f}\|_\infty \leq \|f\|_1 \)

- \(f \mapsto \mathcal{F}(f) = \hat{f} \) defines bounded linear operator
 \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) \)

- \(\mathcal{F} = \mathcal{F}_G \) is called the **Fourier transform** on \(G \)

- \(L^1(G) \) is associative algebra under convolution
 \((f \ast g)(x) = \int f(x - t) \, g(t) \, dm_G(t) \)

- \(C_0(\hat{G}) \) is associative algebra under pointwise multiplication
 \((\varphi \cdot \psi)(\gamma) = \varphi(\gamma) \psi(\gamma) \)

- \(\mathcal{F}(f \ast g) = \mathcal{F}(f) \mathcal{F}(g), \ \hat{f \ast g} = \hat{f} \hat{g} \)
Fourier Transform 2
Fourier Transform 2

For finite abelian group G:
Fourier Transform 2

For finite abelian group G:

- $\mathcal{F}(f)(\gamma) = \hat{f}(\gamma) = d_G \sum_{x \in G} f(x) \overline{\gamma(x)} = \langle f, \gamma \rangle_G$

 $d_G > 0$ is normalizing coefficient, typically
 $d_G = 1$ or $1/|G|$ or $1/\sqrt{|G|}$
Fourier Transform 2

For finite abelian group G:

- $\mathcal{F}(f)(\gamma) = \hat{f}(\gamma) = d_G \sum_{x \in G} f(x) \overline{\gamma}(x) = \langle f, \gamma \rangle_G$

 $d_G > 0$ is normalizing coefficient, typically
 $d_G = 1$ or $1/|G|$ or $1/\sqrt{|G|}$

- $\langle f, g \rangle_G = d_G \sum_{x \in G} f(x) \overline{g}(x)$ – scalar product on \mathbb{C}^G

 $\langle \gamma, \chi \rangle_G = |G| \ d_G \ \delta_{\gamma, \chi}$ – characters are orthogonal
Fourier Transform 2

For finite abelian group G:

- $\mathcal{F}(f)(\gamma) = \hat{f}(\gamma) = d_G \sum_{x \in G} f(x) \bar{\gamma}(x) = \langle f, \gamma \rangle_G$

 $d_G > 0$ is normalizing coefficient, typically

 $d_G = 1$ or $1/|G|$ or $1/\sqrt{|G|}$

- $\langle f, g \rangle_G = d_G \sum_{x \in G} f(x) \bar{g}(x)$ – scalar product on \mathbb{C}^G

 $\langle \gamma, \chi \rangle_G = |G| d_G \delta_{\gamma, \chi}$ – characters are orthogonal

- $\mathcal{F}_G : \mathbb{C}^G \to \mathbb{C}^{\hat{G}}$ is linear isomorphism
Fourier Transform 2

For finite abelian group G:

- $\mathcal{F}(f)(\gamma) = \hat{f}(\gamma) = d_G \sum_{x \in G} f(x) \overline{\gamma}(x) = \langle f, \gamma \rangle_G$

 $d_G > 0$ is normalizing coefficient, typically $d_G = 1$ or $1/|G|$ or $1/\sqrt{|G|}$

- $\langle f, g \rangle_G = d_G \sum_{x \in G} f(x) \overline{g}(x)$ – scalar product on \mathbb{C}^G

 $\langle \gamma, \chi \rangle_G = |G| \ d_G \delta_{\gamma, \chi}$ – characters are orthogonal

- $\mathcal{F}_G : \mathbb{C}^G \rightarrow \mathbb{C}^{\hat{G}}$ is linear isomorphism

- Fourier inversion formula and Plancherel identity

 $f = d_{\hat{G}} \sum_{\gamma \in \hat{G}} \hat{f}(\gamma) \gamma$

 $\langle f, g \rangle_G = \langle \hat{f}, \hat{g} \rangle_{\hat{G}}$

 hold once $d_G d_{\hat{G}} = 1/|G|$
Fourier Transform 2

For finite abelian group G:

- $\mathcal{F}(f)(\gamma) = \hat{f}(\gamma) = d_G \sum_{x \in G} f(x) \overline{\gamma(x)} = \langle f, \gamma \rangle_G$
 - $d_G > 0$ is normalizing coefficient, typically $d_G = 1$ or $1/|G|$ or $1/\sqrt{|G|}$
- $\langle f, g \rangle_G = d_G \sum_{x \in G} f(x) \overline{g(x)}$ – scalar product on \mathbb{C}^G
- $\langle \gamma, \chi \rangle_G = |G| d_G \delta_{\gamma, \chi}$ – characters are orthogonal
- $\mathcal{F}_G : \mathbb{C}^G \rightarrow \mathbb{C}^{\hat{G}}$ is linear isomorphism
- Fourier inversion formula and Plancherel identity
 $$f = d_{\hat{G}} \sum_{\gamma \in \hat{G}} \hat{f}(\gamma) \gamma$$
 $$\langle f, g \rangle_G = \langle \hat{f}, \hat{g} \rangle_{\hat{G}}$$
 - hold once $d_G d_{\hat{G}} = 1/|G|$
- For $G = \mathbb{Z}_n$:
 $$\hat{f}(a) = d_G \sum_{k \in \mathbb{Z}_n} f(k) e^{-2\pi iak/n}$$
For finite abelian group G:

- $\mathcal{F}(f)(\gamma) = \hat{f}(\gamma) = d_G \sum_{x \in G} f(x) \overline{\gamma}(x) = \langle f, \gamma \rangle_G$

 $d_G > 0$ is normalizing coefficient, typically $d_G = 1$ or $1/|G|$ or $1/\sqrt{|G|}$

- $\langle f, g \rangle_G = d_G \sum_{x \in G} f(x) \overline{g}(x)$ – scalar product on \mathbb{C}^G

 $\langle \gamma, \chi \rangle_G = |G| d_G \delta_{\gamma, \chi}$ – characters are orthogonal

- $\mathcal{F}_G : \mathbb{C}^G \to \mathbb{C}\hat{G}$ is linear isomorphism

- Fourier inversion formula and Plancherel identity

 $f = d_G \sum_{\gamma \in \hat{G}} \hat{f}(\gamma) \gamma$ \quad $\langle f, g \rangle_G = \langle \hat{f}, \hat{g} \rangle_{\hat{G}}$

 hold once $d_G d_{\hat{G}} = 1/|G|$

- For $G = \mathbb{Z}_n$: \quad $\hat{f}(a) = d_G \sum_{k \in \mathbb{Z}_n} f(k) e^{-2\pi i ak/n}$

- For $G = \mathbb{Z}_m \times \mathbb{Z}_n$

 $\hat{f}(a, b) = d_G \sum_{(k,l) \in \mathbb{Z}_m \times \mathbb{Z}_n} f(k, l) e^{-2\pi i (ak+bl)/mn}$
In what follows $1 \leq p, q \leq \infty$, \[\frac{1}{p} + \frac{1}{q} = 1. \]

For $1 \leq p < \infty$, $L^1(G) \cap L^p(G)$ is dense in $L^p(G)$ w.r.t. the L^p-norm.

For $1 \leq p \leq 2$, the restricted Fourier transform $F : L^1(G) \cap L^p(G) \to L^q(\hat{G})$ satisfies \[\| \hat{f} \|_q \leq \| f \|_p \] for $f \in L^1(G) \cap L^p(G)$.

It extends to the Fourier transform $F : L^p(G) \to L^q(\hat{G})$.

For $p = 2$ we get the Fourier-Plancherel transform which is an isometric isomorphism of Hilbert spaces $F : L^2(G) \to L^2(\hat{G})$.

Proper normalization of Haar measures m_G, m_{bG} ensures the Plancherel identity and Fourier inversion formula:

$\langle f, g \rangle_G = \int f \cdot g \, dm_G = \int \hat{f} \cdot \hat{g} \, dm_{bG} = \langle \hat{f}, \hat{g} \rangle_{bG}$.

$f(x) = \int b_{\hat{G}} \hat{f}(\gamma) \gamma(x) \, dm_{bG}(\gamma)$.
In what follows $1 \leq p, q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$

- For $1 \leq p < \infty$, $L^1(G) \cap L^p(G)$ is dense in $L^p(G)$ w.r.t. the L^p-norm
In what follows $1 \leq p, q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$

- For $1 \leq p < \infty$, $L^1(G) \cap L^p(G)$ is dense in $L^p(G)$ w.r.t. the L^p-norm

- for $1 \leq p \leq 2$, the restricted Fourier transform $\mathcal{F} : (L^1(G) \cap L^p(G))$ satisfies $\|\hat{f}\|_q \leq \|f\|_p$ for $f \in L^1(G) \cap L^p(G)$
In what follows $1 \leq p, q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$

- For $1 \leq p < \infty$, $L^1(G) \cap L^p(G)$ is dense in $L^p(G)$ w.r.t. the L^p-norm
- for $1 \leq p \leq 2$, the restricted Fourier transform $\mathcal{F} \upharpoonright (L^1(G) \cap L^p(G))$ satisfies $\|\hat{f}\|_q \leq \|f\|_p$ for $f \in L^1(G) \cap L^p(G)$
- it extends to the Fourier transform $\mathcal{F} : L^p(G) \to L^q(\hat{G})$
In what follows $1 \leq p, q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$

- For $1 \leq p < \infty$, $L^1(G) \cap L^p(G)$ is dense in $L^p(G)$ w.r.t. the L^p-norm
- For $1 \leq p \leq 2$, the restricted Fourier transform $\mathcal{F} \upharpoonright (L^1(G) \cap L^p(G))$ satisfies $\| \hat{f} \|_q \leq \| f \|_p$ for $f \in L^1(G) \cap L^p(G)$
- It extends to the Fourier transform $\mathcal{F} : L^p(G) \rightarrow L^q(\hat{G})$
- For $p = 2$ we get the **Fourier-Plancherel transform**
 which is an isometric isomorphism of Hilbert spaces
 $\mathcal{F} : L^2(G) \rightarrow L^2(\hat{G})$
In what follows $1 \leq p, q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$

- For $1 \leq p < \infty$, $L^1(G) \cap L^p(G)$ is dense in $L^p(G)$ w.r.t. the L^p-norm.

- for $1 \leq p \leq 2$, the restricted Fourier transform $\mathcal{F}|(L^1(G) \cap L^p(G))$ satisfies $\|\hat{f}\|_q \leq \|f\|_p$ for $f \in L^1(G) \cap L^p(G)$.

- it extends to the Fourier transform $\mathcal{F}: L^p(G) \to L^q(\hat{G})$.

- for $p = 2$ we get the **Fourier-Plancherel transform** which is an isometric isomorphism of Hilbert spaces $\mathcal{F}: L^2(G) \to L^2(\hat{G})$.

- proper normalization of Haar measures m_G, $m_{\hat{G}}$ ensures **Plancherel identity** and **Fourier inversion formula**

\[
\langle f, g \rangle_G = \int f \cdot \overline{g} \, dm_G = \int \hat{f} \cdot \overline{\hat{g}} \, dm_{\hat{G}} = \langle \hat{f}, \hat{g} \rangle_{\hat{G}}
\]

\[
f(x) = \int_{\hat{G}} \hat{f}(\gamma) \gamma(x) \, dm_{\hat{G}}(\gamma)
\]
Fourier Transform 4
Fourier Transform 4

\(M(G) \) is the Banach space of all complex-valued regular Borel measures \(\mu \) on \(G \) with bounded total variation \(\| \mu \| \).
M(G) is the Banach space of all complex-valued regular Borel measures μ on G with bounded total variation $\|\mu\|

- M(G) is nonseparable in general;
 $m_G \in M(G)$ only if G is compact
M(G) is the Banach space of all complex-valued regular Borel measures \(\mu \) on \(G \) with bounded total variation \(\|\mu\| \)

- M(G) is nonseparable in general;
 \(m_G \in M(G) \) only if \(G \) is compact
- M(G) is the dual of \(C_0(G) \): each \(\mu \in M(G) \) defines bounded linear functional \(g \mapsto \int g \, d\mu \) on \(C_0(G) \)
 (Riesz representation theorem)
Fourier Transform 4

\(M(G)\) is the Banach space of all complex-valued regular Borel measures \(\mu\) on \(G\) with bounded total variation \(\|\mu\|\)

- \(M(G)\) is nonseparable in general; \(m_G \in M(G)\) only if \(G\) is compact
- \(M(G)\) is the dual of \(C_0(G)\): each \(\mu \in M(G)\) defines bounded linear functional \(g \mapsto \int g \, d\mu\) on \(C_0(G)\) (Riesz representation theorem)
- \(L^1(G)\) can be identified with the Banach subspace
 \[
 \{\mu \in M(G); \ \mu \text{ is absolutely continuous w.r.t. } m_G\}
 \]
 \(f \in L^1(G)\) defines the functional \(g \mapsto \int gf \, d\mu\) on \(C_0(G)\) (\(d\mu = f \, dm_G\); Radon-Nikodym theorem)
Fourier Transform 4

$M(G)$ is the Banach space of all complex-valued regular Borel measures μ on G with bounded total variation $||\mu||$

- $M(G)$ is nonseparable in general;
 $m_G \in M(G)$ only if G is compact
- $M(G)$ is the dual of $C_0(G)$: each $\mu \in M(G)$ defines bounded linear functional $g \mapsto \int g \, d\mu$ on $C_0(G)$
 (Riesz representation theorem)
- $L^1(G)$ can be identified with the Banach subspace
 \[\{ \mu \in M(G); \ \mu \text{ is absolutely continuous w.r.t. } m_G \} \]
 $f \in L^1(G)$ defines the functional $g \mapsto \int gf \, d\mu$ on $C_0(G)$
 (d$\mu = f \, dm_G$; Radon-Nikodym theorem)
- Fourier transform $\mathcal{F} : L^1(G) \to C_0(\hat{G})$ extends to
 Fourier-Stieltjes transform $\mu \mapsto \mathcal{F}(\mu) = \hat{\mu}$
 $\mathcal{F} : M(G) \to C_{bu}(\hat{G})$, given by $\hat{\mu}(\gamma) = \int \gamma \, d\mu$
Fourier Transform

$M(G)$ is the Banach space of all complex-valued regular Borel measures μ on G with bounded total variation $\|\mu\|$

- $M(G)$ is nonseparable in general;
 $m_G \in M(G)$ only if G is compact
- $M(G)$ is the dual of $C_0(G)$: each $\mu \in M(G)$ defines bounded linear functional $g \mapsto \int g \, d\mu$ on $C_0(G)$ (Riesz representation theorem)
- $L^1(G)$ can be identified with the Banach subspace
 \[\{ \mu \in M(G); \mu \text{ is absolutely continuous w.r.t. } m_G \} \]
 $f \in L^1(G)$ defines the functional $g \mapsto \int g f \, d m_G$ on $C_0(G)$
 (d$\mu = f \, d m_G$; Radon-Nikodym theorem)
- Fourier transform $\mathcal{F} : L^1(G) \to C_0(\hat{G})$ extends to Fourier-Stieltjes transform $\mu \mapsto \mathcal{F}(\mu) = \hat{\mu}$
 $\mathcal{F} : M(G) \to C_{bu}(\hat{G})$, given by $\hat{\mu}(\gamma) = \int \gamma \, d\mu$
- $\mathcal{F}(\mu * \nu) = \mathcal{F}(\mu) \mathcal{F}(\nu)$, $\hat{\mu * \nu} = \hat{\mu} \hat{\nu}$
Fourier Transform 5
Fourier Transform 5

Fourier inversion formula \(f = \int \hat{f}(\gamma) \gamma \, dm_{\widehat{G}}(\gamma) \)
does not always hold.
Fourier inversion formula \(f = \int \hat{f}(\gamma) \gamma d\mu_{\hat{G}}(\gamma) \)
does not always hold.

Scalar product of characters \(\langle \gamma, \chi \rangle_G = \int \gamma \cdot \overline{\chi} d\mu_G \)
is not defined unless \(G \) is compact.
Fourier Transform 5

Fourier inversion formula \(f = \int \hat{f}(\gamma) \gamma \, dm_{\hat{G}}(\gamma) \)
does not always hold.

Scalar product of characters \(\langle \gamma, \chi \rangle_G = \int \gamma \cdot \overline{\chi} \, dm_G \)
is not defined unless \(G \) is compact.

For finite \(G \) all the above spaces coincide with \(\mathbb{C}^G \), the scalar product is everywhere defined, and the Fourier inversion formula holds.
Fourier Transform 5

Fourier inversion formula

\[f = \int \hat{f}(\gamma) \gamma \, dm_G(\gamma) \]

does not always hold.

Scalar product of characters

\[\langle \gamma, \chi \rangle_G = \int \gamma \cdot \overline{\chi} \, dm_G \]

is not defined unless \(G \) is compact.

For finite \(G \) all the above spaces coincide with \(\mathbb{C}^G \), the scalar product is everywhere defined, and the Fourier inversion formula holds.

Fast Fourier Transform
gives extremely powerful and fast algorithms for FT on finite abelian groups.
Fourier inversion formula \(f = \int \hat{f}(\gamma) \gamma \, dm_G(\gamma) \) does not always hold.

Scalar product of characters \(\langle \gamma, \chi \rangle_G = \int \gamma \cdot \bar{\chi} \, dm_G \) is not defined unless \(G \) is compact.

For finite \(G \) all the above spaces coincide with \(\mathbb{C}^G \), the scalar product is everywhere defined, and the Fourier inversion formula holds.

Fast Fourier Transform gives extremely powerful and fast algorithms for FT on finite abelian groups.

Computations of FT on the \(L^p(G) \)s and \(M(G) \) are frequently based on discrete approximations of \(G \), sometimes by finite abelian groups.
Fourier Transform 5

Fourier inversion formula \(f = \int \hat{f}(\gamma) \gamma \, dm_{\hat{G}}(\gamma) \)
does not always hold.

Scalar product of characters \(\langle \gamma, \chi \rangle_{G} = \int \gamma \cdot \overline{\chi} \, dm_{G} \)
is not defined unless \(G \) is compact.

For finite \(G \) all the above spaces coincide with \(\mathbb{C}^{G} \), the scalar product is everywhere defined, and the Fourier inversion formula holds.

Fast Fourier Transform gives extremely powerful and fast algorithms for FT on finite abelian groups.

Computations of FT on the \(L^{p}(G) \)s and \(M(G) \) are frequently based on discrete approximations of \(G \), sometimes by finite abelian groups.

Isn’t there some “universal extension” of all the spaces \(L^{p}(G) \) \((1 \leq p \leq 2)\) and \(M(G) \), and a uniform scheme defining the Fourier transform on this extension, covering all the particular cases, like if \(G \) were finite?
Nonstandard Analysis 1

Nonstandard analysis offers solution and additional insights. NSA is a method based on application of mathematical logic to other parts of mathematics, invented by A. Robinson (1960s).

T. Tao: One of the features of NSA, as opposed to its standard counterparts, is that it efficiently conceals with all the epsilons and deltas, that are so prevalent in standard analysis... As a consequence, analysis acquires a much more algebraic flavour when viewed through the nonstandard lens.

Nonstandard Analysis 1

Nonstandard analysis offers solution and additional insights.
Nonstandard Analysis 1

Nonstandard analysis offers solution and additional insights.

NSA is a method based on application of mathematical logic to other parts of mathematics, invented by A. Robinson (1960s).
Nonstandard analysis offers solution and additional insights.

NSA is a method based on application of mathematical logic to other parts of mathematics, invented by A. Robinson (1960s).

T. Tao: One of the features of NSA, as opposed to its standard counterparts, is that it efficiently conceals with all the epsilons and deltas, that are so prevalent in standard analysis... As a consequence, analysis acquires a much more algebraic flavour when viewed through the nonstandard lens.
Nonstandard analysis offers solution and additional insights.

NSA is a method based on application of mathematical logic to other parts of mathematics, invented by A. Robinson (1960s).

T. Tao: One of the features of NSA, as opposed to its standard counterparts, is that it efficiently conceals with all the epsilons and deltas, that are so prevalent in standard analysis... As a consequence, analysis acquires a much more algebraic flavour when viewed through the nonstandard lens.

P. Vopěnka: Odmítnutí Newtonova a Lebnizova pojetí infinitesimálního kalkulu matematiky 19. a 20. století – vyvolané ať již jejich neochotou či neschopností domyslet a dotvořit základní pojmy, o než se původní pojetí tohoto kalkulu opíralo – bylo jedním z největších omylů nejen matematiky, ale evropské vědy vůbec.
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

• rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes

• continuity:
 \[f(x + d) \approx f(x) \text{ for } d \approx 0 \]

• derivative:
 \[f'(x) \approx \frac{f(x + d) - f(x)}{d}, \text{ where } 0 \neq d \approx 0 \]

• integral:
 \[\int_a^b f(x) \, dx \approx \sum_{n=1}^{\infty} f(x_k) \, d, \quad a + (k-1)d \leq x_k \leq a + kd, \] for "infinite" \(n \in \mathbb{N} \),
 \(d = \frac{b-a}{n} \approx 0 \)

• extension of all domains of mathematical objects by abundance of new ideal elements

• extended domains have the same mathematical properties w.r.t. original first-order language (transfer principle)

• every consistent "not too big" system of standard formulas is satisfied by some object (saturation)
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

- Rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes.
- Continuity:
 \[f(x + d) \approx f(x) \quad \text{for} \quad d \approx 0 \]
- Derivative:
 \[f'(x) \approx f(x + d) - f(x) \quad \text{where} \quad 0 \neq d \approx 0 \]
- Integral:
 \[\int_a^b f(x) \, dx \approx \sum_{k=1}^{n} f(x_k) \, d, \quad a + (k-1)d \leq x_k \leq a + kd \]

- Extension of all domains of mathematical objects by abundance of new ideal elements.
- Extended domains have the same mathematical properties w.r.t. original first-order language (transfer principle).
- Every consistent "not too big" system of standard formulas is satisfied by some object (saturation).
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

- rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

- rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes
- continuity: \(f(x + d) \approx f(x) \) for \(d \approx 0 \)
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

- rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes
- continuity: \(f(x + d) \approx f(x) \) for \(d \approx 0 \)
- \(f'(x) \approx \frac{f(x+d) - f(x)}{d} \), where \(0 \neq d \approx 0 \)
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

- rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes
- continuity: \(f(x + d) \approx f(x) \) for \(d \approx 0 \)
- \(f'(x) \approx \frac{f(x+d) - f(x)}{d} \), where \(0 \neq d \approx 0 \)
- \(\int_a^b f(x) \, dx \approx \sum_{k=1}^{n} f(x_k) \, d \), \(a + (k - 1)d \leq x_k \leq a + kd \), for “infinite” \(n \in \mathbb{N}, d = (b - a)/n \approx 0 \)
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

- rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes
- continuity: \(f(x + d) \approx f(x) \) for \(d \approx 0 \)
- \(f'(x) \approx \frac{f(x+d) - f(x)}{d} \), where \(0 \neq d \approx 0 \)
- \(\int_a^b f(x) \, dx \approx \sum_{k=1}^n f(x_k) \, d \), \(a + (k - 1)d \leq x_k \leq a + kd \), for “infinite” \(n \in \mathbb{N} \), \(d = (b - a)/n \approx 0 \)
- extension of all domains of mathematical objects by abundance of new ideal elements
Merits and contributions of NSA (among other things):

- rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes
- continuity: \(f(x + d) \approx f(x) \) for \(d \approx 0 \)
- \(f'(x) \approx \frac{f(x+d) - f(x)}{d} \), where \(0 \neq d \approx 0 \)
- \(\int_{a}^{b} f(x) \, dx \approx \sum_{k=1}^{n} f(x_k) \, d \), \(a + (k - 1)d \leq x_k \leq a + kd \), for “infinite” \(n \in \mathbb{N}, d = (b - a)/n \approx 0 \)
- extension of all domains of mathematical objects by abundance of new ideal elements
- extended domains have the same mathematical properties w.r.t. original first-order language (transfer principle)
Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

- rehabilitation of the original infinitesimal calculus with infinitely small and infinitely big numerical magnitudes
- continuity: \(f(x + d) \approx f(x) \) for \(d \approx 0 \)
- \(f'(x) \approx \frac{f(x+d) - f(x)}{d} \), where \(0 \neq d \approx 0 \)
- \(\int_a^b f(x) \, dx \approx \sum_{k=1}^{n} f(x_k) \, d \), \(a + (k - 1)d \leq x_k \leq a + kd \), for “infinite” \(n \in \mathbb{N} \), \(d = (b - a)/n \approx 0 \)
- extension of all domains of mathematical objects by abundance of new ideal elements
- extended domains have the same mathematical properties w.r.t. original first-order language (transfer principle)
- every consistent “not too big” system of standard formulas is satisfied by some object (saturation)
Nonstandard Analysis 3
Nonstandard Analysis 3

In particular:
In particular:

- $^*\mathbb{N}$ – hypernatural numbers: $\mathbb{N} < ^*\mathbb{N}$, $^*\mathbb{N} \setminus \mathbb{N} \neq \emptyset$
In particular:

- \(\mathbb{N} \) – hypernatural numbers: \(\mathbb{N} \prec \mathbb{N}, \mathbb{N} \setminus \mathbb{N} \neq \emptyset \)

- \(\mathbb{R} \) – hyperreal numbers: \(\mathbb{R} \prec \mathbb{R}, \mathbb{R} \setminus \mathbb{R} \neq \emptyset \)

 \[\mathbb{F}\mathbb{R} = \{ x \in \mathbb{R}; \exists \ r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \]
 \[\mathbb{I}\mathbb{R} = \{ x \in \mathbb{R}; \forall \ r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \]

 finite and infinitesimal hyperreals, resp.

- \(\mathbb{C} \) – hypercomplex numbers: \(\mathbb{C} \prec \mathbb{C}, \mathbb{C} \setminus \mathbb{C} \neq \emptyset \)

 \[\mathbb{F}\mathbb{C} = \{ x \in \mathbb{C}; \exists \ r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \]
 \[\mathbb{I}\mathbb{R} = \{ x \in \mathbb{R}; \forall \ r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \]

 finite and infinitesimal hypercomplex numbers, resp.
In particular:

- \(\mathbb{N} \) – hypernatural numbers: \(\mathbb{N} \subset \mathbb{N}^* \), \(\mathbb{N}^* \setminus \mathbb{N} \neq \emptyset \)

- \(\mathbb{R} \) – hyperreal numbers: \(\mathbb{R} \subset \mathbb{R}^* \), \(\mathbb{R}^* \setminus \mathbb{R} \neq \emptyset \)
 \(\mathbb{F}^*\mathbb{R} = \{ x \in \mathbb{R}^* ; \exists r \in \mathbb{R}, r > 0 : |x| \leq r \} \)
 \(\mathbb{I}^*\mathbb{R} = \{ x \in \mathbb{R}^* ; \forall r \in \mathbb{R}, r > 0 : |x| \leq r \} \)
 finite and infinitesimal hyperreals, resp.

- \(\mathbb{C} \) – hypercomplex numbers: \(\mathbb{C} \subset \mathbb{C}^* \), \(\mathbb{C}^* \setminus \mathbb{C} \neq \emptyset \)
 \(\mathbb{F}^*\mathbb{C} = \{ x \in \mathbb{C}^* ; \exists r \in \mathbb{R}, r > 0 : |x| \leq r \} \)
 \(\mathbb{I}^*\mathbb{C} = \{ x \in \mathbb{C}^* ; \forall r \in \mathbb{R}, r > 0 : |x| \leq r \} \)
 finite and infinitesimal hypercomplex numbers, resp.
In particular:

- **N** – hypernatural numbers: \(\mathbb{N} \prec \mathcal{N}, \mathcal{N} \setminus \mathbb{N} \neq \emptyset \)
- **R** – hyperreal numbers: \(\mathbb{R} \prec \mathcal{R}, \mathcal{R} \setminus \mathbb{R} \neq \emptyset \)
 \[
 \mathcal{F}\mathcal{R} = \{ x \in \mathcal{R}; \exists r \in \mathbb{R}, r > 0 : |x| \leq r \}
 \]
 \[
 \mathcal{I}\mathcal{R} = \{ x \in \mathcal{R}; \forall r \in \mathbb{R}, r > 0 : |x| \leq r \}
 \]
 finite and infinitesimal hyperreals, resp.
- **C** – hypercomplex numbers: \(\mathbb{C} \prec \mathcal{C}, \mathcal{C} \setminus \mathbb{C} \neq \emptyset \)
 \[
 \mathcal{F}\mathcal{C} = \{ x \in \mathcal{C}; \exists r \in \mathbb{R}, r > 0 : |x| \leq r \}
 \]
 \[
 \mathcal{I}\mathcal{C} = \{ x \in \mathcal{C}; \forall r \in \mathbb{R}, r > 0 : |x| \leq r \}
 \]
 finite and infinitesimal hypercomplex numbers, resp.
- for each finite hyperreal or hypercomplex number \(x \) there is unique real or complex number \(\circ x = \text{st} \ x \), called *shadow* or *standard part* of \(x \), such that \(x \approx \circ x \)
Nonstandard Analysis 3

In particular:

- ***N** – hypernatural numbers: \(\mathbb{N} < *\mathbb{N} \), \(*\mathbb{N} \setminus \mathbb{N} \neq \emptyset \)
- ***R** – hyperreal numbers: \(\mathbb{R} < *\mathbb{R} \), \(*\mathbb{R} \setminus \mathbb{R} \neq \emptyset \)
 \(F^*\mathbb{R} = \{ x \in *\mathbb{R}; \ \exists r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \)
 \(I^*\mathbb{R} = \{ x \in *\mathbb{R}; \ \forall r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \)
 finite and infinitesimal hyperreals, resp.
- ***C** – hypercomplex numbers: \(\mathbb{C} < *\mathbb{C} \), \(*\mathbb{C} \setminus \mathbb{C} \neq \emptyset \)
 \(F^*\mathbb{C} = \{ x \in *\mathbb{C}; \ \exists r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \)
 \(I^*\mathbb{C} = \{ x \in *\mathbb{C}; \ \forall r \in \mathbb{R}, \ r > 0 : |x| \leq r \} \)
 finite and infinitesimal hypercomplex numbers, resp.
- for each finite hyperreal or hypercomplex number \(x \) there is unique real or complex number \(\circ x = \text{st} x \), called shadow or standard part of \(x \), such that \(x \approx \circ x \)
- \(F^*\mathbb{R}/I^*\mathbb{R} \cong \mathbb{R} \), \(F^*\mathbb{C}/I^*\mathbb{C} \cong \mathbb{C} \)
Nonstandard Analysis 4

In general:

• every "standard" mathematical object M has its "nonstandard" extension $\ast M \succ M$; the embedding $M \rightarrow \ast M$ is onto iff M is finite.

• the whole universe U of "standard" mathematical objects is embedded into the universe $\ast U$ of "nonstandard" (internal) objects.

• every standard set M can be embedded into a hyperfinite set $H \subseteq \ast M$.

• every standard vector space V over a field K can be embedded into a hyperfinite dimensional vector space $H \subseteq \ast V$ over $\ast K$.
Nonstandard Analysis 4

In general:
In general:

- every “standard” mathematical object M has its “nonstandard” extension $\ast M \succ M$
Nonstandard Analysis 4

In general:

- every “standard” mathematical object M has its “nonstandard” extension $\ast M \succ M$
In general:

- every “standard” mathematical object M has its “nonstandard” extension $^*M \succ M$
- the embedding $M \rightarrow ^*M$ is onto iff M is finite
In general:

- every “standard” mathematical object M has its “nonstandard” extension $\ast M \succ M$
- the embedding $M \rightarrow \ast M$ is onto iff M is finite
- the whole universe \mathcal{U} of “standard” mathematical objects is embedded into the universe $\ast \mathcal{U}$ of “nonstandard” (internal) objects
Nonstandard Analysis 4

In general:

- every "standard" mathematical object M has its "nonstandard" extension $\ast M \succ M$
 the embedding $M \to \ast M$ is onto iff M is finite
- the whole universe \mathcal{U} of "standard" mathematical objects is embedded into the universe $\ast \mathcal{U}$ of "nonstandard" (internal) objects
Nonstandard Analysis 4

In general:

- every “standard” mathematical object M has its “nonstandard” extension $^*M \succ M$
 the embedding $M \rightarrow ^*M$ is onto iff M is finite
- the whole universe \mathcal{U} of “standard” mathematical objects is embedded into the universe $^*\mathcal{U}$ of “nonstandard” (internal) objects (standard, internal and external objects)
Nonstandard Analysis 4

In general:

- every “standard” mathematical object M has its “nonstandard” extension $\star M \supset M$
 the embedding $M \to \star M$ is onto iff M is finite
- the whole universe \mathcal{U} of “standard” mathematical objects is embedded into the universe $\star \mathcal{U}$ of “nonstandard” (internal) objects (standard, internal and external objects)
- every standard set M can be embedded into a \textit{hyperfinitely set} $H \subseteq \star M$
In general:

- every “standard” mathematical object \(M \) has its “nonstandard” extension \(*M \succ M \)
 the embedding \(M \rightarrow *M \) is onto iff \(M \) is finite
- the whole universe \(\mathcal{U} \) of “standard” mathematical objects is embedded into the universe \(*\mathcal{U} \) of “nonstandard” (internal) objects (standard, internal and external objects)
- every standard set \(M \) can be embedded into a \textit{hyperfinite set} \(H \subseteq *M \)
- every standard vector space \(V \) over a field \(K \) can be embedded into a \textit{hyperfinite dimensional vector space} \(H \subseteq *V \) over \(*K \)
On the other hand, not every standard group can be embedded into a hyperfinite group. In general, algebraic structure can be an obstacle to embedability into hyperfinite objects. However, every standard abelian group can be embedded into a hyperfinite abelian group.

D. Zeilberger: Continuous analysis and geometry are just degenerate approximations to the discrete world [...] While discrete analysis is conceptually simpler (and truer) than continuous analysis, technically it is (usually) much more difficult. Granted, real geometry and analysis were necessary simplifications to enable humans to make progress in science and mathematics [...].
On the other hand, not every standard group can be embedded into a hyperfinite group.
On the other hand, not every standard group can be embedded into a hyperfinite group.

In general, algebraic structure can be obstacle to embedability into hyperfinite objects.
Nonstandard Analysis 5

On the other hand, not every standard group can be embedded into a hyperfinite group.

In general, algebraic structure can be obstacle to embedability into hyperfinite objects.

However, every standard abelian group can be embedded into a hyperfinite abelian group.
On the other hand, not every standard group can be embedded into a hyperfinite group.

In general, algebraic structure can be obstacle to embedability into hyperfinite objects.

However, every standard abelian group can be embedded into a hyperfinite abelian group.

D. Zeilberger: *Continuous analysis and geometry are just degenerate approximations to the discrete world [...] While discrete analysis is conceptually simpler (and truer) than continuous analysis, technically it is (usually) much more difficult. Granted, real geometry and analysis were necessary simplifications to enable humans to make progress in science and mathematics [...]"*
Nonstandard Analysis 6
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X,

X_f is the set of "finite" or "nearstandard", i.e., accessible elements of X; $y \approx x \in X_f \Rightarrow y \in X_f$, i.e., $X_f = E[X_f]$.

$X \sim = X_f / E = X^\flat$ – the nonstandard hull or observable trace of (X, E, X_f).
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X,
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
- $\text{mon}(x) = E[x] = \{y \in X; x \approx y\}$ – monad of $x \in X$
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
- $\text{mon}(x) = E[x] = \{y \in X; x \approx y\}$ – monad of $x \in X$
- X_f: set of “finite” or “nearstandard”, i.e., accessible elements of X;
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
- mon$(x) = E[x] = \{y \in X; x \approx y\}$ – monad of $x \in X$
- X_f: set of “finite” or “nearstandard”, i.e., accessible elements of X;
Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
- $\text{mon}(x) = E[x] = \{y \in X; x \approx y\}$ – monad of $x \in X$
- X_f: set of “finite” or “nearstandard”, i.e., accessible elements of X; $y \approx x \in X_f \Rightarrow y \in X_f$, i.e. $X_f = E[X_f]$.

And X_f and E are external sets; X_f is union and E is intersection of “not too many” internal sets (Σ^0_1 and Π^0_1).
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
- $\text{mon}(x) = E[x] = \{y \in X; x \approx y\}$ – monad of $x \in X$
- X_f: set of “finite” or “nearstandard”, i.e., accessible elements of X;
 $y \approx x \in X_f$ \Rightarrow $y \in X_f$, i.e. $X_f = E[X_f]$
- $X \cong X_f/E = X^\flat$ – nonstandard hull or observable trace of (X, E, X_f)
Nonstandard Analysis 6

Every completely regular topological space \(X \) can be represented by a triplet \((X, E, X_f)\), where

- \(X \) is an ambient hyperfinite set
- \(E : \) equivalence relation of infinitesimal nearness on \(X \), \(x \approx y \) iff \((x, y) \in E\)
- \(\text{mon}(x) = E[x] = \{ y \in X ; x \approx y \} \) – monad of \(x \in X \)
- \(X_f \) : set of “finite” or “nearstandard”, i.e., accessible elements of \(X \);
 \(y \approx x \in X_f \Rightarrow y \in X_f \), i.e. \(X_f = E[X_f] \)
- \(X \cong X_f/E = X^b \) – nonstandard hull or observable trace of \((X, E, X_f)\)
Nonstandard Analysis 6

Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
- $\text{mon}(x) = E[x] = \{y \in X; x \approx y\}$ – monad of $x \in X$
- X_f: set of “finite” or “nearstandard”, i.e., accessible elements of X; $y \approx x \in X_f \Rightarrow y \in X_f$, i.e. $X_f = E[X_f]$
- $X \cong X_f/E = X^b$ – nonstandard hull or observable trace of (X, E, X_f)
 - $\circ x = \text{mon}(x) \in X$ – the image of $x \in X_f$ in $X = X_f/E$
Every completely regular topological space X can be represented by a triplet (X, E, X_f), where

- X is an ambient hyperfinite set
- E: equivalence relation of infinitesimal nearness on X, $x \approx y$ iff $(x, y) \in E$
- $\text{mon}(x) = E[x] = \{y \in X; x \approx y\}$ – monad of $x \in X$
- X_f: set of “finite” or “nearstandard”, i.e., accessible elements of X;
 $y \approx x \in X_f \Rightarrow y \in X_f$, i.e. $X_f = E[X_f]$
- $X \cong X_f/E = X^b$ – nonstandard hull or observable trace of (X, E, X_f)
 $\circ x = \text{mon}(x) \in X$ – the image of $x \in X_f$ in $X = X_f/E$
- X_f and E are external sets; X_f is union and E is intersection of “not too many” internal sets (Σ^0_1 and Π^0_1)
Nonstandard Analysis 7
Nonstandard Analysis 7

Topology of both X and X is more intuitively described in terms of \approx.
Nonstandard Analysis 7

Topology of both X and X is more intuitively described in terms of \approx.

- $Y \subseteq X$ is open iff $\forall x \in Y \exists \text{int } A : \text{mon}(x) \subseteq A \subseteq Y$
Nonstandard Analysis 7

Topology of both X and \mathbf{X} is more intuitively described in terms of \approx.

- $Y \subseteq X$ is open iff $\forall x \in Y \exists \text{int } A : \text{mon}(x) \subseteq A \subseteq Y$
- S-continuity: $x \approx y \Rightarrow f(x) \approx f(y)$
Nonstandard Analysis 7

Topology of both X and \mathbf{X} is more intuitively described in terms of \approx.

- $Y \subseteq X$ is open iff $\forall x \in Y \exists \text{int } A : \text{mon}(x) \subseteq A \subseteq Y$
- S-continuity: $x \approx y \Rightarrow f(x) \approx f(y)$
- \mathbf{X} is discrete iff E is internal on X_f (then $E = \text{Id}_X$, w.l.o.g.)
Nonstandard Analysis 7

Topology of both X and \mathbf{X} is more intuitively described in terms of \approx.

- $Y \subseteq X$ is open iff $\forall x \in Y \exists^{\text{int}} A : \text{mon}(x) \subseteq A \subseteq Y$
- S-continuity: $x \approx y \Rightarrow f(x) \approx f(y)$
- \mathbf{X} is discrete iff E is internal on X_f (then $E = \text{Id}_X$, w.l.o.g.)
- \mathbf{X} is connected iff for any $x, y \in X_f$ there is internal sequence (x_0, x_1, \ldots, x_n) (with $n \in \mathbb{N}^*$) s.t. $x_k \in X_f$, $x = x_0$, $x_n = y$, and $x_k \approx x_{k+1}$ for $k < n$
Nonstandard Analysis 7

Topology of both X and \mathbf{X} is more intuitively described in terms of \approx.

- $Y \subseteq X$ is open iff $\forall x \in Y \exists^{\text{int}} A : \text{mon}(x) \subseteq A \subseteq Y$
- S-continuity: $x \approx y \Rightarrow f(x) \approx f(y)$
- \mathbf{X} is discrete iff E is internal on X_f (then $E = \text{Id}_X$, w.l.o.g.)
- \mathbf{X} is connected iff for any $x, y \in X_f$ there is internal sequence (x_0, x_1, \ldots, x_n) (with $n \in ^*\mathbb{N}$) s.t. $x_k \in X_f$, $x = x_0$, $x_n = y$, and $x_k \approx x_{k+1}$ for $k < n$
- \mathbf{X} is locally compact iff every hyperfinite set $H \subseteq X_f$ of pairwise discernible elements is finite
Nonstandard Analysis 7

Topology of both X and \mathbf{X} is more intuitively described in terms of \approx.

- $Y \subseteq X$ is open iff $\forall x \in Y \exists \text{int } A : \text{mon}(x) \subseteq A \subseteq Y$
- S-continuity: $x \approx y \Rightarrow f(x) \approx f(y)$
- \mathbf{X} is discrete iff E is internal on X_f (then $E = \text{Id}_X$, w.l.o.g.)
- \mathbf{X} is connected iff for any $x, y \in X_f$ there is internal sequence (x_0, x_1, \ldots, x_n) (with $n \in \ast \mathbb{N}$) s.t. $x_k \in X_f$, $x = x_0$, $x_n = y$, and $x_k \approx x_{k+1}$ for $k < n$
- \mathbf{X} is locally compact iff every hyperfinite set $H \subseteq X_f$ of pairwise discernible elements is finite
- \mathbf{X} is compact iff, additionally, X_f is internal (then $X_f = X$, w.l.o.g.)
Nonstandard Analysis

Topology of both X and X is more intuitively described in terms of \approx.

- $Y \subseteq X$ is open iff $\forall x \in Y \exists \text{int } A : \text{mon}(x) \subseteq A \subseteq Y$
- S-continuity: $x \approx y \Rightarrow f(x) \approx f(y)$
- X is discrete iff E is internal on X_f (then $E = \text{Id}_X$, w.l.o.g.)
- X is connected iff for any $x, y \in X_f$ there is internal sequence (x_0, x_1, \ldots, x_n) (with $n \in ^*\mathbb{N}$) s.t. $x_k \in X_f$, $x = x_0$, $x_n = y$, and $x_k \approx x_{k+1}$ for $k < n$
- X is locally compact iff every hyperfinite set $H \subseteq X_f$ of pairwise discernible elements is finite
- X is compact iff, additionally, X_f is internal (then $X_f = X$, w.l.o.g.)
- for X locally compact, compact subsets of X are exactly $A^\flat = \{ \circ a; \ a \in A \}$ for internal $A \subseteq X_f$ (“pushing-down” A)
Nonstandard Analysis 8
Nonstandard Analysis 8

Internal function $f : X \to *\mathbb{C}$ represents a function $f : X \to \mathbb{C}$ only if f is S-continuous and finite on X_f:
Nonstandard Analysis

Internal function $f : X \rightarrow \ast \mathbb{C}$ represents a function $f : X \rightarrow \mathbb{C}$ only if f is S-continuous and finite on X_f:

- $x \approx y \Rightarrow f(x) \approx f(y)$ for $x, y \in X_f$
Nonstandard Analysis 8

Internal function $f : X \to \ast \mathbb{C}$ represents a function $f : X \to \mathbb{C}$ only if f is S-continuous and finite on X_f:

- $x \approx y \Rightarrow f(x) \approx f(y)$ for $x, y \in X_f$
- $|f(x)| < \infty$, i.e., $f(x) \in F^* \mathbb{C}$ for $x \in X_f$
Internal function $f : X \to *\mathbb{C}$ represents a function $\mathbf{f} : \mathbf{X} \to \mathbb{C}$ only if f is S-continuous and finite on X_f:

- $x \approx y \Rightarrow f(x) \approx f(y)$ for $x, y \in X_f$
- $|f(x)| < \infty$, i.e., $f(x) \in F^*\mathbb{C}$ for $x \in X_f$
- then $\mathbf{f}(x) = \circ f(x) = \text{st } f(x)$ and \mathbf{f} is continuous
Internal function $f : X \to \ast \mathbb{C}$ represents a function $f : X \to \mathbb{C}$ only if f is S-continuous and finite on X_f:

- $x \approx y \Rightarrow f(x) \approx f(y)$ for $x, y \in X_f$
- $|f(x)| < \infty$, i.e., $f(x) \in F^* \mathbb{C}$ for $x \in X_f$
- then $f(\circ x) = \circ f(x) = \text{st} f(x)$ and f is continuous
- $f \in C(X, E, X_f)$ is called lifting of $f \in C(X)$
Internal function \(f : X \to \ast \mathbb{C} \) represents a function \(\mathbf{f} : X \to \mathbb{C} \) only if \(f \) is \(S \)-continuous and finite on \(X_f \):

- \(x \approx y \Rightarrow f(x) \approx f(y) \) for \(x, y \in X_f \)
- \(|f(x)| < \infty \), i.e., \(f(x) \in F^*\mathbb{C} \) for \(x \in X_f \)
- then \(\mathbf{f}(\circ x) = \circ f(x) = \text{st} f(x) \) and \(\mathbf{f} \) is continuous
- \(f \in C(X, E, X_f) \) is called \textbf{lifting} of \(\mathbf{f} \in C(X) \)
- \(\mathbf{f} = f^\flat = \circ (f | X_f) \), \(\mathbf{f} \) is obtained by “pushing-down” \(f \)
Internal function $f : X \to \ast \mathbb{C}$ represents a function $f : X \to \mathbb{C}$ only if f is S-continuous and finite on X_f:

- $x \approx y \Rightarrow f(x) \approx f(y)$ for $x, y \in X_f$
- $|f(x)| < \infty$, i.e., $f(x) \in \mathbb{F}^\ast \mathbb{C}$ for $x \in X_f$
- then $f(\circ x) = \circ f(x) = \text{st } f(x)$ and f is continuous
- $f \in C(X, E, X_f)$ is called \textbf{lifting} of $f \in C(X)$
- $f = f^b = \circ (f \upharpoonright X_f)$, f is obtained by “pushing-down” f
- $f \in C_u(X)$ iff f has (everywhere) S-continuous lifting $f \in C(X, E)$
Internal function \(f : X \rightarrow \ast \mathbb{C} \) represents a function \(f : X \rightarrow \mathbb{C} \) only if \(f \) is \(S \)-continuous and finite on \(X_f \):

- \(x \approx y \Rightarrow f(x) \approx f(y) \) for \(x, y \in X_f \)
- \(|f(x)| < \infty \), i.e., \(f(x) \in F^* \mathbb{C} \) for \(x \in X_f \)
- then \(f(\circ x) = \circ f(x) = \text{st } f(x) \) and \(f \) is continuous
- \(f \in C(X, E, X_f) \) is called \textbf{lifting} of \(f \in C(X) \)
- \(f = f^b = \circ (f \upharpoonright X_f) \), \(f \) is obtained by “pushing-down” \(f \)
- \(f \in C_u(X) \) iff \(f \) has (everywhere) \(S \)-continuous lifting \(f \in C(X, E) \)
- \(f \in C_b(X) \) iff \(f \) has lifting \(f \in C_b(X, E, X_f) \), i.e., \(f \in C(X, E, X_f) \) and \(\|f\|_{\infty} = \max_{x \in X} |f(x)| < \infty \)
Internal function $f : X \to \ast\mathbb{C}$ represents a function $\mathbf{f} : \mathbf{X} \to \mathbb{C}$ only if f is S-continuous and finite on X_f:

- $x \approx y \Rightarrow f(x) \approx f(y)$ for $x, y \in X_f$
- $|f(x)| < \infty$, i.e., $f(x) \in \mathbb{F}^\ast \mathbb{C}$ for $x \in X_f$
- then $\mathbf{f}(\circ x) = \circ f(x) = \text{st } f(x)$ and \mathbf{f} is continuous
- $f \in \mathcal{C}(X, E, X_f)$ is called lifting of $\mathbf{f} \in \mathcal{C}(\mathbf{X})$
- $\mathbf{f} = f^\flat = \circ (f \restriction X_f)$, \mathbf{f} is obtained by “pushing-down” f
- $\mathbf{f} \in \mathcal{C}_u(\mathbf{X})$ iff \mathbf{f} has (everywhere) S-continuous lifting $f \in \mathcal{C}(X, E)$
- $\mathbf{f} \in \mathcal{C}_b(\mathbf{X})$ iff \mathbf{f} has lifting $f \in \mathcal{C}_b(X, E, X_f)$, i.e., $f \in \mathcal{C}(X, E, X_f)$ and $\|f\|_\infty = \max_{x \in X} |f(x)| < \infty$
- $\mathbf{f} \in \mathcal{C}_0(\mathbf{X})$ iff \mathbf{f} has lifting $f \in \mathcal{C}_0(X, E, X_f)$, i.e., $f \in \mathcal{C}_b(X, E, X_f)$ and $f(x) \approx 0$ for $x \in X \setminus X_f$
Nonstandard Analysis

Not all internal functions $f : X \to \ast \mathbb{C}$ represent standard functions $X \to \mathbb{C}$. Some of them represent standard objects of different nature: cosets of functions in Lebesgue L^p spaces, measures, distributions, etc.
Nonstandard Analysis 9

Not all internal functions \(f : X \to \ast \mathbb{C} \) represent standard functions \(X \to \mathbb{C} \). Some of them represent standard objects of different nature: cosets of functions in Lebesgue \(L^p \) spaces, measures, distributions, etc.
Not all internal functions $f : X \to \ast \mathbb{C}$ represent standard functions $X \to \mathbb{C}$.

Some of them represent standard objects of different nature: cosets of functions in Lebesgue L^p spaces, measures, distributions, etc.
Nonstandard Analysis 10
Nonstandard Analysis 10

Loeb measure.
Loeb measure.

X is hyperfinite set, $d : X \to ^*\mathbb{R}$ is internal, $d(x) \geq 0$ for $x \in X$; typically, $d(x) = d$ is uniform (constant) on X.
Nonstandard Analysis 10

Loeb measure.

X is hyperfinite set, $d : X \to ^*\mathbb{R}$ is internal, $d(x) \geq 0$ for $x \in X$; typically, $d(x) = d$ is uniform (constant) on X

- d defines (hyper)discrete weighted counting measure

 $\nu_d(A) = \sum_{a \in A} d(a)$ on the Boolean algebra $^*\mathcal{P}(X)$

 of all internal subsets of X
Nonstandard Analysis

Loeb measure.

X is hyperfinite set, $d : X \to ^*\mathbb{R}$ is internal, $d(x) \geq 0$ for $x \in X$; typically, $d(x) = d$ is uniform (constant) on X

- d defines (hyper)discrete weighted counting measure $\nu_d(A) = \sum_{a \in A} d(a)$ on the Boolean algebra $^*\mathcal{P}(X)$ of all internal subsets of X
- $A \mapsto {}^\circ \nu_d(A)$, where ${}^\circ \nu_d(A) = \infty$ if $\nu_d(A) \notin \mathbb{F}^*\mathbb{R}$, induces the **Loeb measure** λ_d on X, defined on (the completion of) the σ-algebra generated by internal subsets of X (*a la* Caratheodory)
Nonstandard Analysis 10

Loeb measure.

X is hyperfinite set, $d : X \to {}^*\mathbb{R}$ is internal, $d(x) \geq 0$ for $x \in X$; typically, $d(x) = d$ is uniform (constant) on X

- d defines (hyper)discrete weighted counting measure $\nu_d(A) = \sum_{a \in A} d(a)$ on the Boolean algebra $^*\mathcal{P}(X)$ of all internal subsets of X

- $A \mapsto \nabla \nu_d(A)$, where $\nabla \nu_d(A) = \infty$ if $\nu_d(A) \notin \mathbb{F}^*\mathbb{R}$, induces the **Loeb measure** λ_d on X, defined on (the completion of) the σ-algebra generated by internal subsets of X (*a la* Caratheodory)

- $S \subseteq X$ is λ_d-measurable with finite measure $\lambda_d(S)$ iff $\sup\{\nabla \nu_d(A); A \subseteq S, A \text{ is internal}\} = \inf\{\nabla \nu_d(B); S \subseteq B \subseteq X, B \text{ is internal}\}$ and both are finite
Nonstandard Analysis 11
Every standard locally compact measurable space \((X, \mathcal{B}, m)\), s.t. ..., can be represented as the observable trace \(X = X_f/E\) of some “topological Loeb quadruplet” \((X, E, X_f, d)\), with hyperfinite \(X\) and uniform \(d\), in such a way that

- \(\nu_d(A) = d|A| < \infty\) for all internal \(A \subseteq X_f\)
Nonstandard Analysis 11

Every standard locally compact measurable space \((X, \mathcal{B}, m)\), s.t. ..., can be represented as the observable trace \(X = X_f/E\) of some “topological Loeb quadruplet” \((X, E, X_f, d)\), with hyperfinite \(X\) and uniform \(d\), in such a way that

- \(\nu_d(A) = d|A| < \infty\) for all internal \(A \subseteq X_f\)
- then, for \(A \in \mathcal{B}\),
 \[
 m(A) = \lambda_d\{x \in X_f; \circ x \in A\}
 = \sup\{\circ (d|A|); A^b \subseteq A, A \subseteq X \text{ is internal}\}
 \]
Every standard locally compact measurable space \((X, \mathcal{B}, m)\), s.t. ..., can be represented as the observable trace \(X = X_f/E\) of some “topological Loeb quadruplet” \((X, E, X_f, d)\), with hyperfinite \(X\) and uniform \(d\), in such a way that

- \(\nu_d(A) = d|A| < \infty\) for all internal \(A \subseteq X_f\)
- then, for \(A \in \mathcal{B}\),
 \[
 m(A) = \lambda_d\{x \in X_f; \circ x \in A\} = \sup\{\circ (d|A|); A^b \subseteq A, A \subseteq X \text{ is internal}\}
 \]
- \(f : X \rightarrow \mathbb{C}\) is measurable iff it has internal **lifting** \(f : X \rightarrow \ast \mathbb{C}\), i.e.,
Nonstandard Analysis

Every standard locally compact measurable space \((X, \mathcal{B}, m)\), s.t. ..., can be represented as the observable trace \(X = X_f/E\) of some “topological Loeb quadruplet” \((X, E, X_f, d)\), with hyperfinite \(X\) and uniform \(d\), in such a way that

1. \(\nu_d(A) = d|A| < \infty\) for all internal \(A \subseteq X_f\)
2. then, for \(A \in \mathcal{B}\),
 \[
 m(A) = \lambda_d\{x \in X_f; \circ x \in A\} = \sup\{\circ(d|A|); A^b \subseteq A, A \subseteq X \text{ is internal}\}
 \]
3. \(f : X \to \mathbb{C}\) is measurable iff it has internal lifting \(f : X \to ^*\mathbb{C}\), i.e.,
4. \(f(\circ x) = ^\circ f(x)\) a.e. on \(X_f\) w.r.t. \(\lambda_d\)
Every standard locally compact measurable space \((X, \mathcal{B}, m)\), s.t., can be represented as the observable trace \(X = X_f/E\) of some “topological Loeb quadruplet” \((X, E, X_f, d)\), with hyperfinite \(X\) and uniform \(d\), in such a way that

- \(\nu_d(A) = d|A| < \infty\) for all internal \(A \subseteq X_f\)
- then, for \(A \in \mathcal{B}\),
 \[m(A) = \lambda_d\{x \in X_f; \circ x \in A\}\]
 \[= \sup\{\circ(d|A|); A^b \subseteq A, A \subseteq X \text{ is internal}\}\]
- \(f : X \to \mathbb{C}\) is measurable iff it has internal **lifting**
 \[f : X \to \ast \mathbb{C}, \text{ i.e.,}\]
- \(f(\circ x) = \circ f(x)\) a.e. on \(X_f\) w.r.t. \(\lambda_d\)
Every standard locally compact measurable space \((X, B, m)\), s.t. ... , can be represented as the observable trace \(X = X_f/E\) of some "topological Loeb quadruplet" \((X, E, X_f, d)\), with hyperfinite \(X\) and uniform \(d\), in such a way that

- \(\nu_d(A) = d|A| < \infty\) for all internal \(A \subseteq X_f\)
- then, for \(A \in B\),
 \[
m(A) = \lambda_d\{x \in X_f; \circ x \in A\}
 = \sup\{\circ(d|A|); A^\flat \subseteq A, A \subseteq X\ \text{is internal}\}
\]
- \(f : X \to \mathbb{C}\) is measurable iff it has internal **lifting** \(f : X \to *\mathbb{C}\), i.e.,
- \(f(\circ x) = \circ f(x)\) a.e. on \(X_f\) w.r.t. \(\lambda_d\)

\[
\begin{array}{cccccc}
 X & \xleftarrow{id} & X_f & \xrightarrow{\circ} & X \\
 \downarrow f & & & & \downarrow f = f^b \\
 *\mathbb{C} & \xrightarrow{\circ} & *\mathbb{C}/ \approx & \xleftarrow{id} & \mathbb{C}
\end{array}
\]
Nonstandard Analysis 12
Nonstandard Analysis 12

Internal function \(f : X \to \ast \mathbb{C} \) is called \textbf{S-integrable} w.r.t. \(X_f \) and \(d \) (even for nonconstant \(d \)) if

\[
\|f\|_{1,d} = \sum_{x \in X} |f(x)| d(x) < \infty
\]

\[
\sum_{z \in \mathbb{Z}} |f(z)| d(z) \approx 0 \quad \text{for internal } \mathbb{Z} \subseteq X \setminus X_f
\]

\[
\sum_{a \in \Delta} |f(a)| d(a) \approx 0 \quad \text{for internal } \Delta \subseteq X \text{ s.t. } \nu d(A) \approx 0
\]

\[
\int_X f \circ f \, d\lambda \approx \sum_{x \in X} f(x) d(x)
\]

\(f \) is \textbf{S}-integrable if \(f^p \) is \textbf{S}-integrable (\(1 \leq p < \infty \))
Nonstandard Analysis 12

Internal function $f : X \to \ast \mathbb{C}$ is called S-integrable w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)| d(x) < \infty$
Internal function $f : X \to \ast \mathbb{C}$ is called \textbf{S-integrable} w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)| \, d(x) < \infty$
- $\sum_{z \in Z} |f(z)| \, d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
Internal function $f : X \to \mathbb{C}$ is called **S-integrable** w.r.t. X_f and d (even for nonconstant d) if

1. $\|f\|_{1,d} = \sum_{x \in X} |f(x)| d(x) < \infty$
2. $\sum_{z \in Z} |f(z)| d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
3. $\sum_{a \in A} |f(a)| d(a) \approx 0$ for internal $A \subseteq X$ s.t. $\nu_d(A) \approx 0$
Internal function $f : X \to \ast \mathbb{C}$ is called **S-integrable** w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)|\,d(x) < \infty$
- $\sum_{z \in Z} |f(z)|\,d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
- $\sum_{a \in A} |f(a)|\,d(a) \approx 0$ for internal $A \subseteq X$ s.t. $\nu_{d}(A) \approx 0$
- then $\int_{X_f} f \,d\lambda_d \approx \sum_{x \in X} f(x)\,d(x)$
Nonstandard Analysis

Internal function $f : X \to \ast\mathbb{C}$ is called S-integrable w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)| \, d(x) < \infty$
- $\sum_{z \in Z} |f(z)| \, d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
- $\sum_{a \in A} |f(a)| \, d(a) \approx 0$ for internal $A \subseteq X$ s.t. $\nu_d(A) \approx 0$
- then $\int_{X_f} \circ f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x)$
- f is S^p-integrable if f^p is S-integrable ($1 \leq p < \infty$)
Internal function $f : X \to \ast \mathbb{C}$ is called **S-integrable** w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)| \ d(x) < \infty$
- $\sum_{z \in Z} |f(z)| \ d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
- $\sum_{a \in A} |f(a)| \ d(a) \approx 0$ for internal $A \subseteq X$ s.t. $\nu_d(A) \approx 0$
- then $\int_{X_f} \circ f \ d\lambda_d \approx \sum_{x \in X} f(x) d(x)$
- f is S^p-integrable if f^p is S-integrable ($1 \leq p < \infty$)
Nonstandard Analysis 12

Internal function $f : X \to \ast \mathbb{C}$ is called **S-integrable** w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)| \, d(x) < \infty$
- $\sum_{z \in Z} |f(z)| \, d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
- $\sum_{a \in A} |f(a)| \, d(a) \approx 0$ for internal $A \subseteq X$ s.t. $\nu_d(A) \approx 0$
- then $\int_{X_f} f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x)$
- f is S^p-integrable if f^p is S-integrable ($1 \leq p < \infty$)

Let, additionally, (X, \mathcal{B}, m) be represented by (X, E, X_f, d), and $f : X \to \mathbb{C}$. Then
Internal function $f : X \to ^*\mathbb{C}$ is called **S-integrable** w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)| d(x) < \infty$
- $\sum_{z \in Z} |f(z)| d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
- $\sum_{a \in A} |f(a)| d(a) \approx 0$ for internal $A \subseteq X$ s.t. $\nu_d(A) \approx 0$
- then $\int_{X_f} \circ f \ d\lambda_d \approx \sum_{x \in X} f(x) d(x)$
- f is S^p-integrable if f^p is S-integrable ($1 \leq p < \infty$)

Let, additionally, (X, \mathcal{B}, m) be represented by (X, E, X_f, d), and $f : X \to \mathbb{C}$. Then

- $f \in L^1(X, m)$ iff f has S-integrable lifting
Internal function $f : X \to \ast \mathbb{C}$ is called **S-integrable** w.r.t. X_f and d (even for nonconstant d) if

- $\|f\|_{1,d} = \sum_{x \in X} |f(x)| \, d(x) < \infty$
- $\sum_{z \in Z} |f(z)| \, d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
- $\sum_{a \in A} |f(a)| \, d(a) \approx 0$ for internal $A \subseteq X$ s.t. $\nu_d(A) \approx 0$
- then $\int_{X_f} ^{\circ} f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x)$
- f is S^p-integrable if f^p is S-integrable ($1 \leq p < \infty$)

Let, additionally, (X, B, m) be represented by (X, E, X_f, d), and $f : X \to \mathbb{C}$. Then

- $f \in L^1(X, m)$ iff f has S-integrable lifting
- $f \in L^p(X, m)$ iff f has S^p-integrable lifting
Internal function \(f : X \to \ast \mathbb{C} \) is called **\(S \)-integrable** w.r.t. \(X_f \) and \(d \) (even for nonconstant \(d \)) if

- \(\| f \|_{1,d} = \sum_{x \in X} |f(x)| d(x) < \infty \)
- \(\sum_{z \in Z} |f(z)| d(z) \approx 0 \) for internal \(Z \subseteq X \setminus X_f \)
- \(\sum_{a \in A} |f(a)| d(a) \approx 0 \) for internal \(A \subseteq X \) s.t. \(\nu_d(A) \approx 0 \)
- then \(\int_{X_f} f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x) \)
- \(f \) is \(S^p \)-integrable if \(f^p \) is \(S \)-integrable (\(1 \leq p < \infty \))

Let, additionally, \((X, \mathcal{B}, m) \) be represented by \((X, E, X_f, d) \), and \(f : X \to \mathbb{C} \). Then

- \(f \in L^1(X, m) \) iff \(f \) has \(S \)-integrable lifting
- \(f \in L^p(X, m) \) iff \(f \) has \(S^p \)-integrable lifting
- \(L^p(X, X_f, d) = \{ f \in \ast \mathbb{C}^X ; f \text{ lifts some } f \in L^p(X, m) \} \)
If \(f \in L^1(X, X_f, \mu) \) is an \(S_p \)-integrable lifting of \(f \in L^1(X, \mu) \), then

\[
\int_X f \, d\mu = \int_X f \circ f \, d\lambda \approx \sum_{x \in X} f(x) \, d(x) \quad \|f\|_1 = \int_X |f| \, d\mu = \int_X f \circ |f| \, d\lambda \approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_1,
\]

Remarks.

Not every \(S_p \)-integrable function is in \(L^p(X, X_f, \mu) \)!

\(L^p(X, X_f, \mu) \) is dense in the subspace of \(S_p \)-integrable functions w.r.t. some "week topology".

\(L^p(X, X_f, \mu) \) is the closure of \(C_{00}(X, E, X_f) \) w.r.t. the \(p \)-norm

\[
\|f\|_{p, \mu} = \left(\sum_{x \in X} |f(x)|^p \right)^{1/p}.
\]
If $f \in \mathcal{L}^1(X, X_f, d)$ is S-integrable lifting of $f \in L^1(X, m)$ then

\[\|f\|_1 = \int_X |f| \, dm = \int_X f \cdot |f| \, \lambda \, dm \approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_1, \]
If $f \in \mathcal{L}^1(X, X_f, d)$ is S-integrable lifting of $f \in L^1(X, m)$ then

- $\int_X f \, dm = \int_{X_f} ^{\circ} f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x)$
Nonstandard Analysis 13

If \(f \in \mathcal{L}^1(X, X_f, d) \) is \(S \)-integrable lifting of \(f \in \mathcal{L}^1(X, m) \) then

- \(\int_X f \, d\mu = \int_{X_f} f \, d\lambda \approx \sum_{x \in X} f(x) \, d(x) \)
- \(\|f\|_1 = \int_X |f| \, d\mu = \int_{X_f} |f| \, d\lambda \approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_{1,d} \)
Nonstandard Analysis 13

If $f \in \mathcal{L}^1(X, X_f, d)$ is S-integrable lifting of $f \in L^1(X, m)$ then

- $\int_X f \, dm = \int_{X_f} f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x)$
- $\|f\|_1 = \int_X |f| \, dm = \int_{X_f} |f| \, d\lambda_d$
 \[\approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_{1,d} \]
If \(f \in \mathcal{L}^1(X, X_f, d) \) is \(S \)-integrable lifting of \(f \in L^1(X, m) \) then

- \(\int_X f \, dm = \int_{X_f} f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x) \)
- \(\|f\|_1 = \int_X |f| \, dm = \int_{X_f} |f| \, d\lambda_d \approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_{1,d} \)

Remarks.
If $f \in \mathcal{L}^1(X, X_f, d)$ is S-integrable lifting of $f \in L^1(X, m)$ then

- $\int_X f \, dm = \int_{X_f} \circ f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x)$
- $\|f\|_1 = \int_X |f| \, dm = \int_{X_f} \circ |f| \, d\lambda_d$
 $\approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_{1,d}$

Remarks.
Not every S^p-integrable function is in $\mathcal{L}^p(X, X_f, d)$!
If $f \in \mathcal{L}^1(X, X_f, d)$ is S-integrable lifting of $f \in L^1(X, m)$ then

- $\int_X f \, dm = \int_{X_f} f \circ d\lambda_d \approx \sum_{x \in X} f(x) \, d(x)$

- $\|f\|_1 = \int_X |f| \, dm = \int_{X_f} |f| \, d\lambda_d$

 $\approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_{1,d}$

Remarks.

Not every S^p-integrable function is in $\mathcal{L}^p(X, X_f, d)$!

$\mathcal{L}^p(X, X_f, d)$ is dense in the subspace of S^p-integrable functions w.r.t. some “week topology”.
If \(f \in \mathcal{L}^1(X, X_f, d) \) is \(S \)-integrable lifting of \(f \in \mathcal{L}^1(X, m) \) then

- \(\int_X f \, dm = \int_{X_f} f \, d\lambda_d \approx \sum_{x \in X} f(x) \, d(x) \)
- \(\|f\|_1 = \int_X |f| \, dm = \int_{X_f} |f| \, d\lambda_d \approx \sum_{x \in X} |f(x)| \, d(x) = \|f\|_{1,d} \)

Remarks.

Not every \(S^p \)-integrable function is in \(\mathcal{L}^p(X, X_f, d) \)!

\(\mathcal{L}^p(X, X_f, d) \) is dense in the subspace of \(S^p \)-integrable functions w.r.t. some “week topology”.

\(\mathcal{L}^p(X, X_f, d) \) is the closure of \(\mathcal{C}_{00}(X, E, X_f) \) w.r.t. the \(p \)-norm

\[
\|f\|_{p,d} = \left(\sum_{x \in X} |f(x)|^p \, d(x) \right)^{1/p}
\]
M(\mathbb{X},\mathbb{X}_f,d) consist of all internal functions \(g: \mathbb{X} \to \mathbb{C}^*\) s.t. (the third condition defining S-integrability is omitted)

\[\|g\|_{1,d} = \sum_{x \in \mathbb{X}} |g(x)| d(x) < \infty \]

\sum_{z \in \mathbb{Z}} |g(z)| d(z) \approx 0 \text{ for internal } \mathbb{Z} \subseteq \mathbb{X} \setminus \mathbb{X}_f \]

Each \(g \in M(\mathbb{X},\mathbb{X}_f,d)\) represents a complex-valued regular Borel measure with finite variation \(\mu \in M(\mathbb{X})\)

\[\|\mu\| \approx \|g\|_{1,d} < \infty \] (variation of \(\mu\))

\[\int f \, d\mu \approx \sum_{x \in \mathbb{X}} f(x) g(x) d(x) \] for \(f \in C_0(\mathbb{X},E,\mathbb{X}_f)\), \(f = f^\blacklozenge \in C_0(\mathbb{X})\) (Riesz rep. thm. + Radon-Nikodym thm. " \(d\mu \approx gd(x)\) ")

Every regular complex-valued Borel measure with finite variation \(\mu \in M(\mathbb{X})\) is obtained in this way from some \(g \in M(\mathbb{X},\mathbb{X}_f,d)\); \(g\) is called lifting of \(\mu\) w.r.t. \(\mathbb{X}_f, E, d\).
\[\mathcal{M}(X, X_f, d) \] consist of all internal functions \(g : X \to ^*\mathbb{C} \) s.t.

(the third condition defining \(S \)-integrability is omitted)
\(M(X, X_f, d) \) consist of all internal functions \(g : X \to \mathbb{C}^* \) s.t.

(the third condition defining \(S \)-integrability is omitted)

- \(\|g\|_{1,d} = \sum_{x \in X} |g(x)| \, d(x) < \infty \)
\(\mathcal{M}(X, X_f, d) \) consist of all internal functions \(g : X \to \ast \mathbb{C} \) s.t.

(the third condition defining \(S \)-integrability is omitted)

- \(\|g\|_{1,d} = \sum_{x \in X} |g(x)| \, d(x) < \infty \)
- \(\sum_{z \in Z} |g(z)| \, d(z) \approx 0 \) for internal \(Z \subseteq X \setminus X_f \)
Nonstandard Analysis

$\mathcal{M}(X, X_f, d)$ consist of all internal functions $g : X \to \ast \mathbb{C}$ s.t.
(the third condition defining S-integrability is omitted)

- $\|g\|_{1,d} = \sum_{x \in X} |g(x)| d(x) < \infty$
- $\sum_{z \in Z} |g(z)| d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$
$\mathcal{M}(X, X_f, d)$ consist of all internal functions $g : X \to \ast \mathbb{C}$ s.t. (the third condition defining S-integrability is omitted)

- $\|g\|_{1,d} = \sum_{x \in X} |g(x)| d(x) < \infty$
- $\sum_{z \in Z} |g(z)| d(z) \approx 0$ for internal $Z \subseteq X \setminus X_f$

Each $g \in \mathcal{M}(X, X_f, d)$ represents a complex-valued regular Borel measure with finite variation $\mu \in M(X)$
\(\mathcal{M}(X, X_f, d) \) consist of all internal functions \(g : X \to \ast \mathbb{C} \) s.t. (the third condition defining \(S \)-integrability is omitted)

- \(\|g\|_{1,d} = \sum_{x \in X} |g(x)| \, d(x) < \infty \)
- \(\sum_{z \in Z} |g(z)| \, d(z) \approx 0 \) for internal \(Z \subseteq X \setminus X_f \)

Each \(g \in \mathcal{M}(X, X_f, d) \) represents a complex-valued regular Borel measure with finite variation \(\mu \in \mathcal{M}(X) \)

- \(\|\mu\| \approx \|g\|_{1,d} < \infty \) (variation of \(\mu \))
\(\mathcal{M}(X, X_f, d) \) consist of all internal functions \(g : X \to \ast \mathbb{C} \) s.t.
(the third condition defining \(S \)-integrability is omitted)

- \(\|g\|_{1,d} = \sum_{x \in X} |g(x)| d(x) < \infty \)
- \(\sum_{z \in Z} |g(z)| d(z) \approx 0 \) for internal \(Z \subseteq X \setminus X_f \)

Each \(g \in \mathcal{M}(X, X_f, d) \) represents a complex-valued regular Borel measure with finite variation \(\mu \in M(X) \)

- \(\|\mu\| \approx \|g\|_{1,d} < \infty \) (variation of \(\mu \))
- \(\int f \, d\mu \approx \sum_{x \in X} f(x) g(x) \, d(x) \)
 for \(f \in C_0(X, E, X_f) \), \(f = f^\flat \in C_0(X) \)
 (Riesz rep. thm. + Radon-Nikodym thm. "\(d\mu \approx g \, d(x) \)")
Nonstandard Analysis 14

\(\mathcal{M}(X, X_f, d) \) consist of all internal functions \(g : X \to \ast \mathbb{C} \) s.t. (the third condition defining \(S \)-integrability is omitted)

- \(\|g\|_{1,d} = \sum_{x \in X} |g(x)| d(x) < \infty \)
- \(\sum_{z \in Z} |g(z)| d(z) \approx 0 \) for internal \(Z \subseteq X \setminus X_f \)

Each \(g \in \mathcal{M}(X, X_f, d) \) represents a complex-valued regular Borel measure with finite variation \(\mu \in M(X) \)

- \(\|\mu\| \approx \|g\|_{1,d} < \infty \) (variation of \(\mu \))
- \(\int f \, d\mu \approx \sum_{x \in X} f(x) g(x) \, d(x) \) for \(f \in \mathcal{C}_0(X, E, X_f), \ f = f^\flat \in \mathcal{C}_0(X) \) (Riesz rep. thm. + Radon-Nikodym thm. “\(d\mu \approx g \, d(x) \)”)
\(\mathcal{M}(X, X_f, d) \) consist of all internal functions \(g : X \to \ast \mathbb{C} \) s.t.
(the third condition defining \(S \)-integrability is omitted)

- \(\|g\|_{1,d} = \sum_{x \in X} |g(x)| \, d(x) < \infty \)
- \(\sum_{z \in Z} |g(z)| \, d(z) \approx 0 \) for internal \(Z \subseteq X \setminus X_f \)

Each \(g \in \mathcal{M}(X, X_f, d) \) represents a complex-valued regular Borel measure with finite variation \(\mu \in \mathcal{M}(X) \)

- \(\|\mu\| \approx \|g\|_{1,d} < \infty \) (variation of \(\mu \))
- \(\int f \, d\mu \approx \sum_{x \in X} f(x) \, g(x) \, d(x) \)
 for \(f \in C_0(X, E, X_f) \), \(f = f^b \in C_0(X) \)
 (Riesz rep. thm. + Radon-Nikodym thm. “\(d\mu \approx g \, d(x) \)"")

Every regular complex-valued Borel measure with finite variation \(\mu \in \mathcal{M}(X) \) is obtained in this way from some \(g \in \mathcal{M}(X, X_f, d) \); \(g \) is called \textbf{lifting} of \(\mu \) w.r.t. \(X_f, E, d \).
Any group triplet (G,G_0,G_f), where
• G is an internal ambient group
• $G_f \leq G$ is a Σ^0_1-subgroup of finite elements of G
• $G_0 \triangleleft G_f$ is a Π^0_1-subgroup of infinitesimal elements of G
gives rise to a “topological triplet” $(G,E_G G_0,G_f)$, where
• $E_G G_0 = \{(x,y) \in G \times G; xy^{-1} \in G_0\}$
• and topological group $G^{\flat} = G_f/G_0$ – observable trace
• $G^{\flat} = G_f/G_0$ is locally compact iff
 • for any internal sets A, B, s.t. $G_0 \subseteq A \subseteq B \subseteq G_f$, there is a finite set $X = \{x_1,\ldots,x_k\} \subseteq B$ s.t. $B \subseteq AX = \bigcup_{i=1}^k Ax_i$
• $G^{\flat} = G_f/G_0$ is abelian iff $[G_f,G_f] \subseteq G_0$, i.e., $\forall x,y \in G_f: [x,y] = xyx^{-1}y^{-1} \in G_0$
PvK Duality & FT in HF Ambience 1

Any group triplet \((G, G_0, G_f)\), where
Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
- \(G_f \leq G\) is a \(\Sigma^0_1\)-subgroup of finite elements of \(G\)
Any group triplet (G, G_0, G_f), where

- G is an internal ambient group
- $G_f \leq G$ is a Σ^0_1-subgroup of finite elements of G
- $G_0 \triangleleft G_f$ is a Π^0_1-subgroup of infinitesimal elements of G
Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
- \(G_f \leq G\) is a \(\Sigma^0_1\)-subgroup of finite elements of \(G\)
- \(G_0 \triangleleft G_f\) is a \(\Pi^0_1\)-subgroup of infinitesimal elements of \(G\)
PvK Duality & FT in HF Ambience 1

Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
- \(G_f \leq G\) is a \(\Sigma^0_1\)-subgroup of finite elements of \(G\)
- \(G_0 \triangleleft G_f\) is a \(\Pi^0_1\)-subgroup of infinitesimal elements of \(G\)

gives rise to a “topological triplet” \((G, E G_0, G_f)\), where
PvK Duality & FT in HF Ambience 1

Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
- \(G_f \leq G\) is a \(\Sigma^0_1\)-subgroup of finite elements of \(G\)
- \(G_0 \triangleleft G_f\) is a \(\Pi^0_1\)-subgroup of infinitesimal elements of \(G\)

gives rise to a “topological triplet” \((G, E_{G_0}, G_f)\), where

- \(E_{G_0} = \{(x, y) \in G \times G; \ xy^{-1} \in G_0\}\)
Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
- \(G_f \leq G\) is a \(\Sigma^0_1\)-subgroup of finite elements of \(G\)
- \(G_0 \triangleleft G_f\) is a \(\Pi^0_1\)-subgroup of infinitesimal elements of \(G\)

gives rise to a “topological triplet” \((G, E_{G_0}, G_f)\), where

- \(E_{G_0} = \{(x, y) \in G \times G; \ xy^{-1} \in G_0\}\)
- and topological group \(G^\flat = G_f/G_0\) – observable trace
Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
- \(G_f \leq G\) is a \(\Sigma^0_1\)-subgroup of finite elements of \(G\)
- \(G_0 \lhd G_f\) is a \(\Pi^0_1\)-subgroup of infinitesimal elements of \(G\)

gives rise to a “topological triplet” \((G, E_{G_0}, G_f)\), where

- \(E_{G_0} = \{(x, y) \in G \times G; \ xy^{-1} \in G_0\}\)
- and topological group \(G^\flat = G_f / G_0\) – observable trace
- \(G^\flat = G_f / G_0\) is locally compact iff

for any internal sets \(A, B\), s.t. \(G_0 \subseteq A \subseteq B \subseteq G_f\),
there is a finite set \(X = \{x_1, \ldots, x_k\} \subseteq B\) s.t.
\(B \subseteq A \times X = \bigcup_{i=1}^k A x_i\)
Any group triplet \((G, G_0, G_f)\), where

- \(G\) is an internal ambient group
- \(G_f \leq G\) is a \(\Sigma^0_1\)-subgroup of finite elements of \(G\)
- \(G_0 \triangleleft G_f\) is a \(\Pi^0_1\)-subgroup of infinitesimal elements of \(G\)

gives rise to a “topological triplet” \((G, E_{G_0}, G_f)\), where

- \(E_{G_0} = \{(x, y) \in G \times G; \ xy^{-1} \in G_0\}\)
- and topological group \(G^\flat = G_f/G_0\) – observable trace
- \(G^\flat = G_f/G_0\) is locally compact iff
 for any internal sets \(A, B\), s.t. \(G_0 \subseteq A \subseteq B \subseteq G_f\),
 there is a finite set \(X = \{x_1, \ldots, x_k\} \subseteq B\) s.t.
 \(B \subseteq A X = \bigcup_{i=1}^k A x_i\)
- \(G^\flat = G_f/G_0\) is abelian iff \([G_f, G_f] \subseteq G_0\), i.e.,
 \(\forall x, y \in G_f : [x, y] = xyx^{-1}y^{-1} \in G_0\)
PvK Duality & FT in HF Ambience
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G ≅ G^♭ = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G \cong G^b = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms:
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace
$G \cong G^b = G_f/G_0$ of some group triplet (G, G_0, G_f)
with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G \cong G^b = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.

However small compact neighborhood U of 0 and
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G \cong G^b = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.

However small compact neighborhood U of 0 and however big compact set K in G,
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $\mathcal{G} \cong G^\flat = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.

However small compact neighborhood U of 0 and however big compact set K in G, there is a finite abelian (U, K)-approximation (F, j) of G:
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G \cong G^\flat = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.

However small compact neighborhood U of 0 and however big compact set K in G, there is a finite abelian (U, K)-approximation (F, j) of G:

- F is finite abelian group
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G \cong G^b = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.

However small compact neighborhood U of 0 and however big compact set K in G, there is a finite abelian (U, K)-approximation (F, j) of G:

- F is finite abelian group
- $j : F \to G$ is injective mapping
PvK Duality & FT in HF Ambience 2

E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G \cong G^\flat = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.

However small compact neighborhood U of 0 and however big compact set K in G, there is a finite abelian (U, K)-approximation (F, j) of G:

- F is finite abelian group
- $j : F \to G$ is injective mapping
E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace $G \cong G^b = G_f/G_0$ of some group triplet (G, G_0, G_f) with hyperfinite abelian ambient group G.

In standard terms: Every LCA group G can be approximated by finite abelian groups.

However small compact neighborhood U of 0 and however big compact set K in G, there is a finite abelian (U, K)-approximation (F, j) of G:

- F is finite abelian group
- $j : F \rightarrow G$ is injective mapping
- $K \subseteq j(F) + U = \bigcup_{a \in F} j(a) + U$
E. I. Gordon [1992]:
Every LCA group \(G \) can be represented as observable trace \(G \cong G^\flat = G_f/G_0 \) of some group triplet \((G, G_0, G_f)\) with **hyperfinite** abelian ambient group \(G \).

In standard terms: Every LCA group \(G \) can be approximated by finite abelian groups.

However small compact neighborhood \(U \) of 0 and however big compact set \(K \) in \(G \), there is a finite abelian \((U, K)\)-approximation \((F, j)\) of \(G \):

- \(F \) is finite abelian group
- \(j : F \rightarrow G \) is injective mapping
- \(K \subseteq j(F) + U = \bigcup_{a \in F} j(a) + U \)
- \(\forall a, b \in F : j(a), j(b), j(a + b) \in K \Rightarrow j(a) + j(b) - j(a + b) \in U \)
PvK Duality & FT in HF Ambience 3

In case of HF ambient group G, $G^{♭} = G_f/G_0$ is locally compact iff for any internal sets A, B, $G_0 \subseteq A \subseteq B \subseteq G_f \Rightarrow |B|/|A| < \infty$

Haar measure $m_G = m_d$ is obtained by pushing down Loeb measure λ_d for $d = 1/|A|$, normalizing multiplier, where A is arbitrary internal set s.t. $G_0 \subseteq A \subseteq G_f$

Can the dual group $\hat{G}^{♭} = \hat{G}_f/G_0$ be described in terms of some group triplet, canonically related to the original triplet (G, G_0, G_f)?
In case of HF ambient group G, $G^b = G_f/G_0$ is locally compact iff for any internal sets A, B, $G_0 \subseteq A \subseteq B \subseteq G_f \Rightarrow \frac{|B|}{|A|} < \infty$
• In case of HF ambient group G, $G^b = G_f/G_0$
 is locally compact iff for any internal sets A, B,
 $G_0 \subseteq A \subseteq B \subseteq G_f \Rightarrow \frac{|B|}{|A|} < \infty$
• Haar measure $m_G = m_d$ is obtained by pushing down
 Loeb measure λ_d for $d = 1/|A|$, *normalizing multiplier*,
 where A is arbitrary internal set s.t. $G_0 \subseteq A \subseteq G_f$
PvK Duality & FT in HF Ambience 3

- In case of HF ambient group G, $G^b = G_f/G_0$ is locally compact iff for any internal sets A, B, $G_0 \subseteq A \subseteq B \subseteq G_f \Rightarrow \frac{|B|}{|A|} < \infty$

- Haar measure $m_G = m_d$ is obtained by pushing down Loeb measure λ_d for $d = 1/|A|$, normalizing multiplier, where A is arbitrary internal set s.t. $G_0 \subseteq A \subseteq G_f$
• In case of HF ambient group G, $G^b = G_f/G_0$ is locally compact iff for any internal sets A, B, $G_0 \subseteq A \subseteq B \subseteq G_f \Rightarrow \frac{|B|}{|A|} < \infty$

• Haar measure $m_G = m_d$ is obtained by pushing down Loeb measure λ_d for $d = 1/|A|$, normalizing multiplier, where A is arbitrary internal set s.t. $G_0 \subseteq A \subseteq G_f$

Can the dual group $\hat{G} = \hat{G}^b = \hat{G}_f/\hat{G}_o$ be described in terms of some group triplet, canonically related to the original triplet (G, G_0, G_f)?
PvK Duality & FT in HF Ambience 4
PvK Duality & FT in HF Ambience

\[\hat{G} = \ast \text{Hom}(G, \ast \mathbb{T}) \left(\cong G \cong \hat{G} \right) \text{ – internal dual group of } G: \]
all internal homomorphisms \(\gamma : G \to \ast \mathbb{T} \)
$\hat{G} = \ast \text{Hom}(G, \ast \mathbb{T}) \left(\cong G \cong \hat{G} \right)$ – internal dual group of G:

all *internal* homomorphisms $\gamma : G \to \ast \mathbb{T}$

$X^{\downarrow} = \{ \gamma \in \hat{G}; \ \forall \ x \in X : \gamma(x) \approx 1 \}$

$\Gamma^{\downarrow} = \{ x \in G; \ \forall \ \gamma \in \Gamma : \gamma(x) \approx 1 \}$

infinitesimal annihilators of arbitrary sets $X \subseteq G$, $\Gamma \subseteq \hat{G}$
\[\hat{G} = \ast \text{Hom}(G, \ast \mathbb{T}) \left(\cong G \cong \hat{G} \right) \] – internal dual group of \(G \):

all \textit{internal} homomorphisms \(\gamma : G \to \ast \mathbb{T} \)

\[X^\downarrow = \{ \gamma \in \hat{G} ; \; \forall x \in X : \gamma(x) \approx 1 \} \]

\[\Gamma^\downarrow = \{ x \in G ; \; \forall \gamma \in \Gamma : \gamma(x) \approx 1 \} \]

\textit{infinitesimal annihilators} of arbitrary sets \(X \subseteq G, \; \Gamma \subseteq \hat{G} \)

- \(G_0^\downarrow \) – all \textit{S}-continuous characters in \(\hat{G} \) (\(\Sigma_1^0 \))
\[\hat{G} = \ast \text{Hom}(G, \ast \mathbb{T}) \left(\cong G \cong \hat{G} \right) \quad \text{— internal dual group of } G: \]

all *internal* homomorphisms \(\gamma : G \to \ast \mathbb{T} \)

\[X\downarrow = \{ \gamma \in \hat{G}; \ \forall x \in X : \gamma(x) \approx 1 \} \]

\[\Gamma\downarrow = \{ x \in G; \ \forall \gamma \in \Gamma : \gamma(x) \approx 1 \} \]

infinitesimal annihilators of arbitrary sets \(X \subseteq G, \ \Gamma \subseteq \hat{G} \)

- \(G_0\downarrow \) — all \(S \)-continuous characters in \(\hat{G} \) \((\Sigma^0_1)\)
- \(G_f\downarrow \) — all characters in \(\hat{G} \), infinitely close to 1 on \(G_f \) \((\Pi^0_1)\)
\(\hat{G} = \ast \text{Hom}(G, \ast \mathbb{T}) \left(\cong G \cong \hat{G} \right) \) – internal dual group of \(G \):

all \textit{internal} homomorphisms \(\gamma : G \to \ast \mathbb{T} \)

\(X_\downarrow = \{ \gamma \in \hat{G}; \ \forall x \in X : \gamma(x) \approx 1 \} \)

\(\Gamma_\downarrow = \{ x \in G; \ \forall \gamma \in \Gamma : \gamma(x) \approx 1 \} \)

\textit{infinitesimal annihilators} of arbitrary sets \(X \subseteq G, \ \Gamma \subseteq \hat{G} \)

- \(G_0^\downarrow \) – all \(S \)-continuous characters in \(\hat{G} \) (\(\Sigma_1^0 \))

- \(G_f^\downarrow \) – all characters in \(\hat{G} \), infinitely close to 1 on \(G_f \) (\(\Pi_1^0 \))

- \((\hat{G}, G_f^\downarrow, G_0^\downarrow) \) – \textit{dual group triplet} of \((G, G_0, G_f) \)
\(\hat{G} = \star \text{Hom}(G, \star \mathbb{T}) \left(\cong G \cong \hat{G} \right) \) \text{ – internal dual group of } G: all internal homomorphisms \(\gamma : G \to \star \mathbb{T} \)

\(X_{\downarrow} = \{ \gamma \in \hat{G}; \forall x \in X : \gamma(x) \approx 1 \} \)

\(\Gamma_{\downarrow} = \{ x \in G; \forall \gamma \in \Gamma : \gamma(x) \approx 1 \} \)

infinitesimal annihilators of arbitrary sets \(X \subseteq G, \Gamma \subseteq \hat{G} \)

- \(G_{0}^{\downarrow} \) \text{ – all } S \text{-continuous characters in } \hat{G} \ (\Sigma_{1}^{0})
- \(G_{f}^{\downarrow} \) \text{ – all characters in } \hat{G}, \text{ infinitely close to } 1 \text{ on } G_{f} \ (\Pi_{1}^{0})
- \((\hat{G}, G_{f}^{\downarrow}, G_{0}^{\downarrow}) \) \text{ – dual group triplet of } (G, G_{0}, G_{f})
\(\hat{G} \) = *\text{Hom}(G, *\mathbb{T}) \left(\cong G \cong \hat{G} \right) \) – internal dual group of \(G \): all internal homomorphisms \(\gamma : G \to *\mathbb{T} \)

\(X^\downarrow = \{ \gamma \in \hat{G}; \ \forall x \in X : \gamma(x) \approx 1 \} \)

\(\Gamma^\downarrow = \{ x \in G; \ \forall \gamma \in \Gamma : \gamma(x) \approx 1 \} \)

infinitesimal annihilators of arbitrary sets \(X \subseteq G, \Gamma \subseteq \hat{G} \)

- \(G_0^\downarrow \) – all \(S \)-continuous characters in \(\hat{G} \) (\(\Sigma_1^0 \))
- \(G_f^\downarrow \) – all characters in \(\hat{G} \), infinitely close to 1 on \(G_f \) (\(\Pi_1^0 \))
- \((\hat{G}, G_f^\downarrow, G_0^\downarrow) \) – dual group triplet of \((G, G_0, G_f) \)

What’s the relation between the observable trace \(\hat{G}^b = G_0^\downarrow / G_f^\downarrow \) of the dual triplet \((\hat{G}, G_f^\downarrow, G_0^\downarrow) \) and the dual \(\hat{G} = \hat{G}^b = G_f / G_0 \) of the observable trace of the original triplet \((G, G_0, G_f) \)?
PvK Duality & FT in HF Ambience 5
Example:
Example: \(\hat{G}^b = G_0^\perp / G_f^\perp \cong \hat{G_f}/\hat{G_0} = \hat{G}^b \)
Example: $\hat{G}^b = G_0^\perp / G_f^\perp \cong \hat{G}_f / G_0 = \hat{G}^b$

$K \in \mathbb{N} \setminus \mathbb{N}$, $N = 2K + 1$, $0 < d < \infty$, $Kd \not\approx 0$
Example: \(\hat{G}^\flat = G_0^\perp / G_f^\perp \cong \hat{G}_f / G_0 = \hat{G}^\flat \)

\(K \in \ast \mathbb{N} \setminus \mathbb{N}, \; N = 2K + 1, \; 0 < d < \infty, \; Kd \not\approx 0 \)

\(G = \{ nd; \; -K \leq n \leq K \} \) with \(+\) mod \(Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)
Example: \(\hat{G}^b = G_0^\perp / G_f^\perp \cong \hat{G}_f / G_0 = \hat{G}^b \)

\(K \in \ast \mathbb{N} \setminus \mathbb{N}, \ N = 2K + 1, \ 0 < d < \infty, \ Kd \not\approx 0 \)

\(G = \{ nd; \ -K \leq n \leq K \} \) with + mod \(Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap \mathbb{I}^* \mathbb{R} = \{ x \in G; \ x \approx 0 \} \)

\(G_f = G \cap \mathbb{F}^* \mathbb{R} = \{ x \in G; \ |x| < \infty \} \)
Example: \(\widehat{G^b} = G_0^\perp / G_f^\perp \cong \widehat{G_f / G_0} = \widehat{G^b} \)

\(K \in \ast \mathbb{N} \setminus \mathbb{N}, \; N = 2K + 1, \; 0 < d < \infty, \; Kd \not\approx 0 \)

\(G = \{ nd; \; -K \leq n \leq K \} \) with + mod \(N \)\(d \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap \mathbb{I}^* \mathbb{R} = \{ x \in G; \; x \approx 0 \} \)

\(G_f = G \cap \mathbb{F}^* \mathbb{R} = \{ x \in G; \; |x| < \infty \} \)

\(G^b = G_f / G_0 \cong \)
Example: \(\hat{G}^b = G_0^\perp / G_f^\perp \cong G_f / G_0 = \hat{G}^b \)

\(K \in {}^*\mathbb{N} \setminus \mathbb{N}, N = 2K + 1, 0 < d < \infty, Kd \not\approx 0 \)

\(G = \{ nd; -K \leq n \leq K \} \) with \(+ \mod Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap \mathbb{I}^*\mathbb{R} = \{ x \in G; x \approx 0 \} \)

\(G_f = G \cap \mathbb{F}^*\mathbb{R} = \{ x \in G; |x| < \infty \} \)

\(G^b = G_f / G_0 \cong \begin{cases}
\mathbb{Z} & \text{if } d \not\approx 0, \text{ as } G_0 = \{0\}, \\
\mathbb{T} & \text{if } d \approx 0, Kd < \infty, \text{ as } G_f = G, \\
\mathbb{R} & \text{if } d \approx 0, Kd \not\in \mathbb{F}^*\mathbb{R}
\end{cases} \)
Example: \(\hat{G}^b = G_0^\perp / G_f^\perp \cong \hat{G}_f / G_0 = \hat{G}^b \)

\(K \in \ast \mathbb{N} \setminus \mathbb{N}, \; N = 2K + 1, \; 0 < d < \infty, \; Kd \not\approx 0 \)

\(G = \{ nd; \; -K \leq n \leq K \} \) with \(+ \) mod \(Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap I^* \mathbb{R} = \{ x \in G; \; x \approx 0 \} \)

\(G_f = G \cap F^* \mathbb{R} = \{ x \in G; \; |x| < \infty \} \)

\(G^b = G_f / G_0 \cong \begin{cases} \mathbb{Z} & \text{if } d \not\approx 0, \text{ as } G_0 = \{ 0 \}, \\ \mathbb{T} & \text{if } d \approx 0, \; Kd < \infty, \text{ as } G_f = G, \\ \mathbb{R} & \text{if } d \approx 0, \; Kd \not\in F^* \mathbb{R} \end{cases} \)

\(\hat{d} = (Nd)^{-1}, \)
Example: \(\hat{G}^b = G_0^\perp / G_f^\perp \cong G_f / G_0 = \hat{G}^b \)

\(K \in *\mathbb{N} \setminus \mathbb{N}, \ N = 2K + 1, \ 0 < d < \infty, \ Kd \not\approx 0 \)

\(G = \{ nd; \ -K \leq n \leq K \} \) with + mod \(Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap \mathbb{I}^*\mathbb{R} = \{ x \in G; \ x \approx 0 \} \)

\(G_f = G \cap \mathbb{F}^*\mathbb{R} = \{ x \in G; \ |x| < \infty \} \)

\(\hat{G}^b = G_f / G_0 \cong \begin{cases} \mathbb{Z} & \text{if } d \not\approx 0, \ \text{as } G_0 = \{0\}, \\ \mathbb{T} & \text{if } d \approx 0, \ Kd < \infty, \ \text{as } G_f = G, \\ \mathbb{R} & \text{if } d \approx 0, \ Kd \not\in \mathbb{F}^*\mathbb{R} \end{cases} \)

\(\hat{d} = (Nd)^{-1}, \ 0 < \hat{d} < \infty, \ K\hat{d} \not\approx 0 \)
PvK Duality & FT in HF Ambience 5

Example: \(\hat{G}^b = G_0^\perp / G_f^\perp \cong \hat{G}_f / G_0 = \hat{G}^b \)

\(K \in \ast \mathbb{N} \setminus \mathbb{N}, \ N = 2K + 1, \ 0 < d < \infty, \ Kd \not\approx 0 \)

\(G = \{ nd; \ -K \leq n \leq K \} \) with + mod \(Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap \mathbb{I}^* \mathbb{R} = \{ x \in G; \ x \approx 0 \} \)

\(G_f = G \cap \mathbb{F}^* \mathbb{R} = \{ x \in G; \ |x| < \infty \} \)

\(G^b = G_f / G_0 \cong \begin{cases} \mathbb{Z} & \text{if } d \not\approx 0, \text{ as } G_0 = \{0\}, \\ \mathbb{T} & \text{if } d \approx 0, \ Kd < \infty, \text{ as } G_f = G, \\ \mathbb{R} & \text{if } d \approx 0, \ Kd \not\in \mathbb{F}^* \mathbb{R} \end{cases} \)

\(\hat{d} = (Nd)^{-1}, \ 0 < \hat{d} < \infty, \ K\hat{d} \not\approx 0 \)

\(\hat{G} = \{ nd\hat{d}; \ -K \leq n \leq K \} \) with + mod \(Nd \hat{d} \), \((\hat{G}, +) \cong (\mathbb{Z}_N, +) \)
PvK Duality & FT in HF Ambience 5

Example: $\widehat{G^b} = G_0^\perp / G_f^\perp \cong \widehat{G_f / G_0} = \widehat{G^b}$

$K \in *\mathbb{N} \setminus \mathbb{N}, \ N = 2K + 1, \ 0 < d < \infty, \ Kd \not\approx 0$

$G = \{nd; \ -K \leq n \leq K\}$ with $+ \mod Nd, \ (G, +) \cong (\mathbb{Z}_N, +)$

$G_0 = G \cap \mathbb{I}^*\mathbb{R} = \{x \in G; \ x \approx 0\}$

$G_f = G \cap \mathbb{F}^*\mathbb{R} = \{x \in G; \ |x| < \infty\}$

$G^b = G_f / G_0 \cong \begin{cases} \mathbb{Z} & \text{if } d \not\approx 0, \ \text{as } G_0 = \{0\}, \\ \mathbb{T} & \text{if } d \approx 0, \ Kd < \infty, \ \text{as } G_f = G, \\ \mathbb{R} & \text{if } d \approx 0, \ Kd \not\in \mathbb{F}^*\mathbb{R} \end{cases}$

$\hat{d} = (Nd)^{-1}, \ 0 < \hat{d} < \infty, \ K\hat{d} \not\approx 0$

$\widehat{G} = \{n\hat{d}; \ -K \leq n \leq K\}$ with $+ \mod N\hat{d}, \ (\widehat{G}, +) \cong (\mathbb{Z}_N, +)$

$\widehat{G}_f^\perp = \widehat{G} \cap \mathbb{I}^*\mathbb{R} = \{y \in \widehat{G}; \ y \approx 0\}$

$\widehat{G}_0^\perp = \widehat{G} \cap \mathbb{F}^*\mathbb{R} = \{y \in \widehat{G}; \ |y| < \infty\}$
Example: \(\hat{G}^b = G_0^\perp / G_f^\perp \cong \hat{G}_f / G_0 = \hat{G}^b \)

\(K \in \mathbb{N} \setminus \mathbb{N} \), \(N = 2K + 1 \), \(0 < d < \infty \), \(Kd \neq 0 \)

\(G = \{ nd; -K \leq n \leq K \} \) with \(+\) mod \(Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap \mathbb{I}^\ast \mathbb{R} = \{ x \in G; x \approx 0 \} \)

\(G_f = G \cap F^\ast \mathbb{R} = \{ x \in G; |x| < \infty \} \)

\(G^b = G_f / G_0 \cong \begin{cases} \mathbb{Z} & \text{if } d \neq 0, \text{ as } G_0 = \{ 0 \}, \\ \mathbb{T} & \text{if } d \approx 0, Kd < \infty, \text{ as } G_f = G, \\ \mathbb{R} & \text{if } d \approx 0, Kd \notin F^\ast \mathbb{R} \end{cases} \)

\(\hat{d} = (Nd)^{-1}, 0 < \hat{d} < \infty, \ K\hat{d} \neq 0 \)

\(\hat{G} = \{ nd\hat{d}; -K \leq n \leq K \} \) with \(+\) mod \(N\hat{d} \), \((\hat{G}, +) \cong (\mathbb{Z}_N, +) \)

\(G_f^\perp = \hat{G} \cap \mathbb{I}^\ast \mathbb{R} = \{ y \in \hat{G}; y \approx 0 \} \)

\(G_0^\perp = \hat{G} \cap F^\ast \mathbb{R} = \{ y \in \hat{G}; |y| < \infty \} \)

\(\hat{G}^b = G_0^\perp / G_f^\perp \cong \)
Example: \(\hat{G}^b = G_0^\perp/G_f^\perp \cong G_f/G_0 = \hat{G}^b \)

\(K \in \ast \mathbb{N} \setminus \mathbb{N}, \ N = 2K + 1, \ 0 < d < \infty, \ Kd \not\approx 0 \)

\(G = \{ nd; \ -K \leq n \leq K \} \) with + mod \(Nd \), \((G, +) \cong (\mathbb{Z}_N, +) \)

\(G_0 = G \cap \mathbb{I}^*\mathbb{R} = \{ x \in G; \ x \approx 0 \} \)

\(G_f = G \cap \mathbb{F}^*\mathbb{R} = \{ x \in G; \ |x| < \infty \} \)

\(G^b = G_f/G_0 \cong \begin{cases} \mathbb{Z} & \text{if } d \not\approx 0, \text{ as } G_0 = \{ 0 \}, \\ \mathbb{T} & \text{if } d \approx 0, \ Kd < \infty, \text{ as } G_f = G, \\ \mathbb{R} & \text{if } d \approx 0, \ Kd \not\in \mathbb{F}^*\mathbb{R} \end{cases} \)

\(\hat{d} = (Nd)^{-1}, \ 0 < \hat{d} < \infty, \ K\hat{d} \not\approx 0 \)

\(\hat{G} = \{ nd; \ -K \leq n \leq K \} \) with + mod \(Nd \), \((\hat{G}, +) \cong (\mathbb{Z}_N, +) \)

\(G_f^\perp = \hat{G} \cap \mathbb{I}^*\mathbb{R} = \{ y \in \hat{G}; \ y \approx 0 \} \)

\(G_0^\perp = \hat{G} \cap \mathbb{F}^*\mathbb{R} = \{ y \in \hat{G}; \ |y| < \infty \} \)

\(\hat{G}^b = G_0^\perp/G_f^\perp \cong \begin{cases} \mathbb{T} & \text{if } d \not\approx 0, \text{ as } G_0^\perp = \hat{G}, \\ \mathbb{Z} & \text{if } d \approx 0, \ Kd < \infty, \text{ as } G_f^\perp = \{ 0 \}, \\ \mathbb{R} & \text{if } d \approx 0, \ Kd \not\in \mathbb{F}^*\mathbb{R} \end{cases} \)
PvK Duality & FT in HF Ambience 6
Each $\gamma : G \to \ast\mathbb{T}$ in G_0^\perp yields continuous character $\gamma^b : G \to \mathbb{T}$, by $\gamma^b(\circ x) = \circ \gamma(x)$, for $x \in G_f$:
Each $\gamma : G \to \mathbb{T}$ in G_0^\perp yields continuous character $\gamma^b : G \to \mathbb{T}$, by $\gamma^b(\circ x) = \circ \gamma(x)$, for $x \in G_f$:

$$
\begin{array}{c}
G & \xleftarrow{\text{id}} & G_f & \xrightarrow{\circ} & G \\
\downarrow \gamma & & & & \downarrow \gamma^b \\
*\mathbb{T} & \xrightarrow{\circ} & *\mathbb{T}/\approx & \xleftarrow{\text{id}} & \mathbb{T}
\end{array}
$$
Each $\gamma : G \rightarrow \ast T$ in G_0^\perp yields continuous character $\gamma^b : G \rightarrow T$, by $\gamma^b(\circ x) = \circ \gamma(x)$, for $x \in G_f$:

\[
\begin{array}{ccc}
G & \xleftarrow{\text{id}} & G_f & \xrightarrow{\circ} & G \\
\downarrow & & \downarrow & & \\
\ast T & \xrightarrow{\circ} & \ast T/\sim & \xleftarrow{\text{id}} & T
\end{array}
\]

- $\gamma \mapsto \gamma^b$ is group homomorphism $G_0^\perp \rightarrow \hat{G}$
Each $\gamma : G \rightarrow ^\ast \mathbb{T}$ in $G_0 \downarrow$ yields continuous character $\gamma^b : G \rightarrow \mathbb{T}$, by $\gamma^b(\circ x) = \circ \gamma(x)$, for $x \in G_f$:

$$G \leftarrow \id \quad G_f \quad \circ \quad \rightarrow G$$

$$\gamma \downarrow \qquad \downarrow \gamma^b$$

$$^\ast \mathbb{T} \quad \circ \quad ^\ast \mathbb{T}/\cong \quad \leftarrow \id \quad \mathbb{T}$$

- $\gamma \mapsto \gamma^b$ is group homomorphism $G_0 \downarrow \rightarrow \hat{G}$
- with image $\{\gamma^b; \gamma \in G_0 \downarrow\}$ and kernel G_f
Each \(\gamma : G \to \ast \mathbb{T} \) in \(G_0 \downarrow \) yields continuous character \(\gamma^b : G \to \mathbb{T} \), by \(\gamma^b(\circ x) = \circ \gamma(x) \), for \(x \in G_f \):

\[
\begin{array}{ccc}
G & \xleftarrow{\text{id}} & G_f & \xrightarrow{\circ} & G \\
\downarrow & \downarrow & \downarrow & \downarrow & \\
\ast \mathbb{T} & \xrightarrow{\circ} & \ast \mathbb{T}/\sim & \xleftarrow{\text{id}} & \mathbb{T}
\end{array}
\]

- \(\gamma \mapsto \gamma^b \) is group homomorphism \(G_0 \downarrow \to \hat{G} \)
- with image \(\{ \gamma^b ; \gamma \in G_0 \downarrow \} \) and kernel \(G_f \downarrow \)
- it induces injective homomorphism \(G_0 \downarrow / G_f \downarrow \to \hat{G} \)
Each $\gamma : G \rightarrow \ast \mathbb{T}$ in G_0^\perp yields continuous character $\gamma^b : G \rightarrow \mathbb{T}$, by $\gamma^b(\circ x) = \circ \gamma(x)$, for $x \in G_f$:

$$
\begin{array}{ccc}
G & \leftarrow & G_f \\
\downarrow & & \downarrow \gamma^b \\
\ast \mathbb{T} & \circ & \ast \mathbb{T} / \approx \\
\end{array}
$$

- $\gamma \mapsto \gamma^b$ is group homomorphism $G_0^\perp \rightarrow \hat{G}$
- with image $\{ \gamma^b ; \gamma \in G_0^\perp \}$ and kernel G_f^\perp
- it induces injective homomorphism $G_0^\perp / G_f^\perp \rightarrow \hat{G}$
- this canonic mapping is isomorphism of $\hat{G}^b = G_0^\perp / G_f^\perp$ onto closed subgroup of $\hat{G} = \hat{G}^b = G_f / G_0$
PvK Duality & FT in HF Ambience 6

Each $\gamma : G \to \ast\mathbb{T}$ in G_0^\perp yields continuous character $\gamma^b : G \to \mathbb{T}$, by $\gamma^b(x) = \circ\gamma(x)$, for $x \in G_f$:

$$
\begin{array}{ccc}
G & \xleftarrow{\text{id}} & G_f & \xrightarrow{\circ} & G \\
\gamma & \downarrow & & \downarrow & \gamma^b \\
\ast\mathbb{T} & \xrightarrow{\circ} & \ast\mathbb{T}/\sim & \xleftarrow{\text{id}} & \mathbb{T}
\end{array}
$$

- $\gamma \mapsto \gamma^b$ is group homomorphism $G_0^\perp \to \hat{G}$
- with image $\{\gamma^b ; \gamma \in G_0^\perp\}$ and kernel G_f^\perp
- it induces injective homomorphism $G_0^\perp/G_f^\perp \to \hat{G}$
- this canonic mapping is isomorphism of $\hat{G}^b = G_0^\perp/G_f^\perp$ onto closed subgroup of $\hat{G} = \hat{G}^b = G_f^\perp/G_0$
- non-S-continuous internal characters $\gamma \in \hat{G} \setminus G_0^\perp$ correspond neither to non-continuous characters of G, nor even to mappings $G \to \mathbb{T}$
Gordon’s Conjecture 1 (GC1):

The canonic mapping

\[G \sim \mathbb{0} \rightarrow \hat{G} \sim \mathbb{0} \]

is isomorphism of topological groups.

• enough to show that \(\gamma \mapsto \gamma^{\flat} \) is onto, i.e., every character \(\gamma \in \hat{G} \) is of form \(\gamma = \gamma^{\flat} \) for some \(\gamma \in G \sim \mathbb{0} \).

• by PvK duality this is equivalent to \(G \sim \mathbb{0} \cap G \mathbb{f} = G \mathbb{0} \), i.e., characters in \(\{ \gamma^{\flat} ; \gamma \in G \sim \mathbb{0} \} \) separate points in \(G \) (density follows).

• I proved a bit more \([PZ, June – July 2012]\):

\(G \sim \mathbb{0} \mathbb{f} = G \mathbb{f} + G \sim \mathbb{0} \mathbb{f} = G \mathbb{f} \), i.e., the dual triplet of \((\hat{G}, G \sim f, G \sim \mathbb{0}) \) is \((G, G \mathbb{0}, G \mathbb{f}) \).

• methods: NSA + Harmonic An. + Additive Combinatorics (G. Freiman, B. Green, I. Ruzsa, T. Tao, V. Vu, ...):

analysis of Bohr sets and spectral sets

\[\mathcal{S}_t(f) = \{ \gamma \in \hat{G} ; |\hat{f}(\gamma)| \geq t \|f\|_1 \} \]

(\(f \in C^\ast \mathbb{G}, t \in [0,1] \))
Gordon’s Conjecture 1 (GC1):
Gordon’s Conjecture 1 (GC1):
The canonic mapping $G_0 \sim / G_f \sim \rightarrow \widehat{G_f} / G_0$ is isomorphism of topological groups.
Gordon’s Conjecture 1 (GC1):
The canonic mapping \(G_0 / G_f \rightarrow \hat{G}_f / G_0 \) is isomorphism of topological groups.

- enough to show that \(\gamma \mapsto \gamma^b \) is onto, i.e., every character \(\gamma \in \hat{G} \) is of form \(\gamma = \gamma^b \) for some \(\gamma \in G_0 \)
Gordon’s Conjecture 1 (GC1):
The canonic mapping $G_0^\perp / G_f^\perp \to \widehat{G_f} / G_0$ is isomorphism of topological groups.

- enough to show that $\gamma \mapsto \gamma^b$ is onto, i.e., every character $\gamma \in \hat{G}$ is of form $\gamma = \gamma^b$ for some $\gamma \in G_0^\perp$
- by PvK duality this is equivalent to $G_0^\perp \cap G_f = G_0$, i.e., characters in $\{ \gamma^b ; \gamma \in G_0^\perp \}$ separate points in G (density follows)
Gordon’s Conjecture 1 (GC1):
The canonic mapping $G_0^\perp / G_f^\perp \to \widehat{G_f} / G_0$ is isomorphism of topological groups.

- enough to show that $\gamma \mapsto \gamma^b$ is onto, i.e., every character $\gamma \in \hat{G}$ is of form $\gamma = \gamma^b$ for some $\gamma \in G_0^\perp$
- by PvK duality this is equivalent to $G_0^\perp \cap G_f = G_0$, i.e., characters in $\{ \gamma^b; \gamma \in G_0^\perp \}$ separate points in G (density follows)
- I proved a bit more [PZ, June–July 2012]: $G_0^\perp \perp = G_0$
Gordon’s Conjecture 1 (GC1):
The canonic mapping $G_0\perp / G_f \perp \rightarrow \hat{G}_f / G_0$ is isomorphism of topological groups.

- enough to show that $\gamma \mapsto \gamma^\flat$ is onto, i.e., every character $\gamma \in \hat{G}$ is of form $\gamma = \gamma^\flat$ for some $\gamma \in G_0\perp$
- by PvK duality this is equivalent to $G_0\perp \perp \cap G_f = G_0$, i.e., characters in $\{\gamma^\flat; \gamma \in G_0\perp\}$ separate points in G (density follows)
- I proved a bit more [PZ, June–July 2012]: $G_0\perp \perp = G_0$
- $G_f \perp \perp = G_f + G_0\perp \perp = G_f$, i.e.,
 the dual triplet of $(\hat{G}, G_f \perp, G_0\perp)$ is (G, G_0, G_f)
Gordon’s Conjecture 1 (GC1):
The canonic mapping \(G_0^\perp/G_f^\perp \to \widehat{G}_f/G_0 \) is isomorphism of topological groups.

- enough to show that \(\gamma \mapsto \gamma^b \) is onto, i.e., every character \(\gamma \in \hat{G} \) is of form \(\gamma = \gamma^b \) for some \(\gamma \in G_0^\perp \)

- by PvK duality this is equivalent to \(G_0^\perp \cap G_f = G_0 \), i.e., characters in \(\{ \gamma^b; \gamma \in G_0^\perp \} \) separate points in \(G \) (density follows)

- I proved a bit more [PZ, June–July 2012]: \(G_0^\perp = G_0 \)

- \(G_f^\perp = G_f + G_0^\perp = G_f \), i.e.,
 the dual triplet of \((\hat{G}, G_f^\perp, G_0^\perp) \) is \((G, G_0, G_f) \)

- methods: NSA + Harmonic An. + Additive Combinatorics
 (G. Freiman, B. Green, I. Ruzsa, T. Tao, V. Vu, ...):
 analysis of Bohr sets and spectral sets
 \(S_t(f) = \{ \gamma \in \hat{G}; |\hat{f}(\gamma)| \geq t \|f\|_1 \} \) \((f \in \mathbb{C}^G, \mathbb{C}^G, t \in [0, 1])\)
There are proper nontrivial subgroups $H \leq G$ s.t. $H \sim \mathbb{Z}$, hence $H \sim G$.

The equality $G \sim G_0$, in fact the inclusion $G \sim G_0 \subseteq G$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, \pi)$ and $q = (q_j)_{j=1}^{\infty}$ be sequence in \mathbb{R}.

Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.:

- by PvK duality: $\forall \alpha, \beta \forall q \forall G \forall (A_j) \exists n: ... \Rightarrow ...$
- gained uniformity: $\forall \alpha, \beta \forall q \exists n \forall G \forall (A_j) : ... \Rightarrow ...$
- no estimate for $n = n(\alpha, \beta, q)$
There are proper nontrivial subgroups $H \leq G$ s.t. $H^\downarrow = \{1_G\}$ (trivial character), hence $H^\downarrow \downarrow = G$.
There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^{\perp\perp} = G$.

The equality $G_0^{\perp\perp} = G_0$, in fact the inclusion $G_0^{\perp\perp} \subseteq G_0$, is equivalent, in standard terms, to the following thm.
PvK Duality & FT in HF Ambience 8

There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^{\perp\perp} = G$.

The equality $G_0^{\perp\perp} = G_0$, in fact the inclusion $G_0^{\perp\perp} \subseteq G_0$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, 2\pi/3)$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$ be sequence in \mathbb{R}. Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.:
PvK Duality & FT in HF Ambience 8

There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^{\perp \perp} = G$.

The equality $G_0^{\perp \perp} = G_0$, in fact the inclusion $G_0^{\perp \perp} \subseteq G_0$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, 2\pi/3)$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$ be sequence in \mathbb{R}. Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

\[\cdots \]
There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^\perp \perp = G$.

The equality $G_0^\perp \perp = G_0$, in fact the inclusion $G_0^\perp \perp \subseteq G_0$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, 2\pi/3)$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$ be sequence in \mathbb{R}. Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_{j-1}|}{|A_j|} \leq q_j$$
There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^{\perp\perp} = G$.

The equality $G_0^{\perp\perp} = G_0$, in fact the inclusion $G_0^{\perp\perp} \subseteq G_0$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, 2\pi/3)$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$ be sequence in \mathbb{R}. Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_{j-1}|}{|A_j|} \leq q_j$$

then $\mathcal{B}_{\alpha}(\mathcal{B}_{\beta}(A_n)) \subseteq A_0$.

There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^{\perp\perp} = G$.

The equality $G_0^{\perp\perp} = G_0$, in fact the inclusion $G_0^{\perp\perp} \subseteq G_0$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, 2\pi/3)$ and $q = (q_j)_{j=1}^{\infty}$, $q_j \geq 1$ be sequence in \mathbb{R}. Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_j - 1|}{|A_j|} \leq q_j$$

then $B_\alpha(B_\beta(A_n)) \subseteq A_0$.

- by PvK duality: $\forall \alpha, \beta \, \forall q \, \forall G \, \forall (A_j) \exists n : \ldots \Rightarrow \ldots$
PvK Duality & FT in HF Ambience 8

There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^\perp \perp = G$.

The equality $G_0^\perp \perp = G_0$, in fact the inclusion $G_0^\perp \perp \subseteq G_0$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, 2\pi/3)$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$ be sequence in \mathbb{R}. Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.: If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_{j-1}|}{|A_j|} \leq q_j$$

then $B_\alpha(B_\beta(A_n)) \subseteq A_0$.

- by PvK duality: $\forall \alpha, \beta \forall q \forall G \forall (A_j) \exists n : \ldots \Rightarrow \ldots$
- gained uniformity: $\forall \alpha, \beta \forall q \exists n \forall G \forall (A_j) : \ldots \Rightarrow \ldots$
There are proper nontrivial subgroups $H \leq G$ s.t. $H^\perp = \{1_G\}$ (trivial character), hence $H^\perp ^\perp = G$.

The equality $G_0^\perp ^\perp = G_0$, in fact the inclusion $G_0^\perp ^\perp \subseteq G_0$, is equivalent, in standard terms, to the following thm.

Let $\alpha, \beta \in (0, 2\pi/3)$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$ be sequence in \mathbb{R}. Then there exists $n \in \mathbb{N}$, depending just on α, β and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_{j-1}|}{|A_j|} \leq q_j$$

then $B_\alpha(B_\beta(A_n)) \subseteq A_0$.

- by PvK duality: $\forall \alpha, \beta \forall q \forall G \forall (A_j) \exists n : \ldots \Rightarrow \ldots$
- gained uniformity: $\forall \alpha, \beta \forall q \exists n \forall G \forall (A_j) : \ldots \Rightarrow \ldots$
- no estimate for $n = n(\alpha, \beta, q)$
Surjectivity of canonic mapping

\[\gamma \mapsto \gamma^{\flat} : G \sim 0 \rightarrow G/0 \rightarrow \hat{G} \]

is equivalent, in standard terms, to the following

stability thm.

Let \(\alpha, \varepsilon \in (0, 2\pi/3) \), \(k \geq 1 \) and \(q = (q_j)_{j=1}^{\infty} \), \(q_j \geq 1 \). There exist \(m \geq 1, n \geq k \) and \(\delta > 0 \), depending just on \(\alpha, \varepsilon, k \) and \(q \), s.t.:

If \(G \) is finite abelian group and \(0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G \) are symmetric sets s.t., for \(1 \leq j \leq n \), \(A_j + A_j \subseteq A_{j-1} \) and \(|A_{j-1}|/|A_j| \leq q_j \)

then for every partial \(\delta \)-homomorphism \(g : mA_0 \rightarrow T \), s.t.

\[|\arg(g(x))| \leq \alpha \] for \(x \in A_k \), there exists genuine homomorphism \(\gamma : G \rightarrow T \) s.t., for each \(x \in A_0 \),

\[|\frac{|\arg(\gamma(x)) - \arg(g(x))|}{|g(x)|} - 1| / |g(x)| \leq \varepsilon \]

"partial \(\delta \)-homomorphism" \(g : A \rightarrow T \) means:

\[\forall x, y \in A : x + y \in A \Rightarrow |\arg(g(x+y)/g(x)g(y))| \leq \delta \]
Surjectivity of canonic mapping $\gamma \mapsto \gamma^\flat : G_0^\perp / G_f^\perp \to \widehat{G}_f / G_0$ is equivalent, in standard terms, to the following stability thm.
Surjectivity of canonic mapping $\gamma \mapsto \gamma^\flat : G_0^\perp / G_f^\perp \to \widehat{G_f / G_0}$ is equivalent, in standard terms, to the following stability thm.

Let $\alpha, \varepsilon \in (0, 2\pi / 3), k \geq 1$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$. There exist $m \geq 1$, $n \geq k$ and $\delta > 0$, depending just on α, ε, k and q, s.t.:
Surjectivity of canonic mapping $\gamma \mapsto \gamma^b : G_0^\perp / G_f^\perp \to \widehat{G_f} / G_0$ is equivalent, in standard terms, to the following **stability** thm.

Let $\alpha, \varepsilon \in (0, 2\pi/3)$, $k \geq 1$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$. There exist $m \geq 1$, $n \geq k$ and $\delta > 0$, depending just on α, ε, k and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,
Surjectivity of canonic mapping $\gamma \mapsto \gamma^b : G_0^\perp / G_f^\perp \rightarrow \hat{G}_f / G_0$ is equivalent, in standard terms, to the following stability thm.

Let $\alpha, \varepsilon \in (0, 2\pi/3)$, $k \geq 1$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$. There exist $m \geq 1$, $n \geq k$ and $\delta > 0$, depending just on α, ε, k and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_j - 1|}{|A_j|} \leq q_j$$
Surjectivity of canonic mapping $\gamma \mapsto \gamma^b : G_0^\perp / G_f^\perp \to \widehat{G_f / G_0}$ is equivalent, in standard terms, to the following stability thm.

Let $\alpha, \varepsilon \in (0, 2\pi/3)$, $k \geq 1$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$. There exist $m \geq 1$, $n \geq k$ and $\delta > 0$, depending just on α, ε, k and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_{j-1}|}{|A_j|} \leq q_j$$

then for every partial δ-homomorphism $g : mA_0 \to \mathbb{T}$, s.t. $|\arg g(x)| \leq \alpha$ for $x \in A_k$, there exists genuine homomorphism $\gamma : G \to \mathbb{T}$ s.t., for each $x \in A_0$,
Surjectivity of canonic mapping $\gamma \mapsto \gamma^b : G_0^\perp / G_f^\perp \to \hat{G}_f / G_0$ is equivalent, in standard terms, to the following **stability** thm.

Let $\alpha, \varepsilon \in (0, 2\pi/3)$, $k \geq 1$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$. There exist $m \geq 1$, $n \geq k$ and $\delta > 0$, depending just on α, ε, k and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_{j-1}|}{|A_j|} \leq q_j$$

then for every partial δ-homomorphism $g : mA_0 \to \mathbb{T}$, s.t. $|\arg g(x)| \leq \alpha$ for $x \in A_k$, there exists genuine homomorphism $\gamma : G \to \mathbb{T}$ s.t., for each $x \in A_0$,

$$\left| \arg \frac{\gamma(x)}{g(x)} \right| \leq \varepsilon$$
Surjectivity of canonic mapping $\gamma \mapsto \gamma^b : G_0^\perp / G_0^\perp \to \hat{G}_f / G_0$ is equivalent, in standard terms, to the following stability thm.

Let $\alpha, \varepsilon \in (0, 2\pi/3)$, $k \geq 1$ and $q = (q_j)_{j=1}^\infty$, $q_j \geq 1$. There exist $m \geq 1$, $n \geq k$ and $\delta > 0$, depending just on α, ε, k and q, s.t.:

If G is finite abelian group and $0 \in A_n \subseteq \ldots \subseteq A_1 \subseteq A_0 \subseteq G$ are symmetric sets s.t., for $1 \leq j \leq n$,

$$A_j + A_j \subseteq A_{j-1} \quad \text{and} \quad \frac{|A_{j-1}|}{|A_j|} \leq q_j$$

then for every partial δ-homomorphism $g : mA_0 \to \mathbb{T}$, s.t.

$|\arg g(x)| \leq \alpha$ for $x \in A_k$, there exists genuine homomorphism $\gamma : G \to \mathbb{T}$ s.t., for each $x \in A_0$,

$$\left| \arg \frac{\gamma(x)}{g(x)} \right| \leq \varepsilon$$

“partial δ-homomorphism” $g : A \to \mathbb{T}$ means:

$$\forall x, y \in A : x + y \in A \Rightarrow \left| \arg \frac{g(x + y)}{g(x) \cdot g(y)} \right| \leq \delta$$
Haar measure on $G = G_0/G_f$ is given as $m_G = m_d$ for normalizing multiplier d s.t. $d|A| \in \mathbb{F}^*\mathbb{R}\setminus\mathbb{I}\setminus\mathbb{R}$ for some (each) internal A, $G_0 \subseteq A \subseteq G_f$.

Haar measure on $\hat{G} = \hat{G}_\sim = G_{\sim 0}/G_{\sim f}$ is given as $m_{\hat{G}} = \hat{m}_d$ for normalizing multiplier \hat{d} s.t. $\hat{d}|B_\alpha(A)| \in \mathbb{F}^*\mathbb{R}\setminus\mathbb{I}\setminus\mathbb{R}$ for some (each) internal A, $G_0 \subseteq A \subseteq G_f$, $\alpha \in (0, 2\pi/3)$.

Can we have Plancherel identity and Fourier inversion formula, i.e., $d\hat{d}|G| = 1$, with such normalizing multipliers?

Gordon's Conjecture 2 (GC2): If d is normalizing multiplier for the triplet (G, G_0, G_f) then $\hat{d} = (d|G|)^{-1}$ is normalizing multiplier for the dual triplet $(\hat{G}, \hat{G}_\sim, \hat{G}_{\sim 0})$.

Equivalently, for internal A, $G_0 \subseteq A \subseteq G_f$, $\alpha \in (0, 2\pi/3)$, $|A||B_\alpha(A)| \in \mathbb{F}^*\mathbb{R}\setminus\mathbb{I}\setminus\mathbb{R}$.
Haar measure on $G = G_f/G_0$ is given as $m_G = m_d$ for normalizing multiplier d s.t. $d |A| \in \mathbb{F}^*\mathbb{R} \setminus \mathbb{I}^*\mathbb{R}$ for some (each) internal A, $G_0 \subseteq A \subseteq G_f$.
Haar measure on \(G = G_f/G_0 \) is given as \(m_G = m_d \)
for normalizing multiplier \(d \) s.t. \(d \, |A| \in \mathbb{F} \mathbb{R} \setminus \mathbb{I} \mathbb{R} \)
for some (each) internal \(A, \ G_0 \subseteq A \subseteq G_f \).

Haar measure on \(\hat{G} = G_0^\perp/G_f^\perp \) is given as \(m_{\hat{G}} = m_{\hat{d}} \)
for normalizing multiplier \(\hat{d} \) s.t. \(\hat{d} \, |B_\alpha(A)| \in \mathbb{F} \mathbb{R} \setminus \mathbb{I} \mathbb{R} \)
for some (each) internal \(A, \ G_0 \subseteq A \subseteq G_f, \ \alpha \in (0, 2\pi/3) \).
Haar measure on \(G = G_f/G_0 \) is given as \(m_G = m_d \) for normalizing multiplier \(d \) s.t. \(d |A| \in \mathbb{F}^* \mathbb{R} \setminus \mathbb{I}^* \mathbb{R} \) for some (each) internal \(A \), \(G_0 \subseteq A \subseteq G_f \).

Haar measure on \(\hat{G} = G_0^\perp / G_f^\perp \) is given as \(m_{\hat{G}} = m_{\hat{d}} \) for normalizing multiplier \(\hat{d} \) s.t. \(\hat{d} \left| B_\alpha(A) \right| \in \mathbb{F}^* \mathbb{R} \setminus \mathbb{I}^* \mathbb{R} \) for some (each) internal \(A \), \(G_0 \subseteq A \subseteq G_f \), \(\alpha \in (0, 2\pi/3) \).

Can we have Plancherel identity and Fourier inversion formula, i.e., \(d \hat{d} |G| = 1 \), with such normalizing multipliers?
Haar measure on $G = G_f/G_0$ is given as $m_G = m_d$
for normalizing multiplier d s.t. $d |A| \in \mathbb{F}^*\mathbb{R} \setminus \mathbb{I}^*\mathbb{R}$
for some (each) internal A, $G_0 \subseteq A \subseteq G_f$.

Haar measure on $\hat{G} = G_0^\perp/G_f^\perp$ is given as $m_{\hat{G}} = m_{\hat{d}}$
for normalizing multiplier \hat{d} s.t. $\hat{d} |B_{\alpha}(A)| \in \mathbb{F}^*\mathbb{R} \setminus \mathbb{I}^*\mathbb{R}$
for some (each) internal A, $G_0 \subseteq A \subseteq G_f$, $\alpha \in (0, \pi/3)$.

Can we have Plancherel identity and Fourier inversion formula,
i.e., $d \hat{d} |G| = 1$, with such normalizing multipliers?

Gordon’s Conjecture 2 (GC2):
Haar measure on \(G = G_f/G_0 \) is given as \(m_G = m_d \) for normalizing multiplier \(d \) s.t. \(d \mid A \mid \in \mathbb{F}^{*} \mathbb{R} \setminus \mathbb{I}^{*} \mathbb{R} \) for some (each) internal \(A \), \(G_0 \subseteq A \subseteq G_f \).

Haar measure on \(\hat{G} = G_0 \downarrow / G_f \downarrow \) is given as \(m_{\hat{G}} = m_{\hat{d}} \) for normalizing multiplier \(\hat{d} \) s.t. \(\hat{d} \mid B_\alpha(A) \mid \in \mathbb{F}^{*} \mathbb{R} \setminus \mathbb{I}^{*} \mathbb{R} \) for some (each) internal \(A \), \(G_0 \subseteq A \subseteq G_f \), \(\alpha \in (0, 2\pi/3) \).

Can we have Plancherel identity and Fourier inversion formula, i.e., \(d \hat{d} \mid G \mid = 1 \), with such normalizing multipliers?

Gordon’s Conjecture 2 (GC2):
If \(d \) is normalizing multiplier for the triplet \((G, G_0, G_f) \) then \(\hat{d} = (d \mid G \mid)^{-1} \) is normalizing multiplier for the dual triplet \((\hat{G}, G_f \downarrow, G_0 \downarrow) \).
Haar measure on $G = G_f/G_0$ is given as $m_G = m_d$
for normalizing multiplier d s.t. $d |A| \in F^* \mathbb{R} \setminus \mathbb{I}^* \mathbb{R}$
for some (each) internal A, $G_0 \subseteq A \subseteq G_f$.

Haar measure on $\hat{G} = G_0^\perp/G_f^\perp$ is given as $m_{\hat{G}} = m_{\hat{d}}$
for normalizing multiplier \hat{d} s.t. $\hat{d} |B_\alpha(A)| \in F^* \mathbb{R} \setminus \mathbb{I}^* \mathbb{R}$
for some (each) internal A, $G_0 \subseteq A \subseteq G_f$, $\alpha \in (0, 2\pi/3)$.

Can we have Plancherel identity and Fourier inversion formula,
i.e., $d \hat{d} |G| = 1$, with such normalizing multipliers?

Gordon’s Conjecture 2 (GC2):
If d is normalizing multiplier for the triplet (G, G_0, G_f) then $\hat{d} = (d |G|)^{-1}$ is normalizing multiplier for the dual triplet $(\hat{G}, G_f^\perp, G_0^\perp)$. Equivalently, for internal A, $G_0 \subseteq A \subseteq G_f$, $\alpha \in (0, 2\pi/3)$,

$$\frac{|A| |B_\alpha(A)|}{|G|} \in F^* \mathbb{R} \setminus \mathbb{I}^* \mathbb{R}$$
Some accounts on the relation between Loeb measure and Haar measure show:

\[\text{GC1} \implies \text{GC2} \]

I gave a more direct and clear proof of \text{GC2} by similar methods like those in \text{GC1}.
Some accounts on the relation between Loeb measure and Haar measure show: $\text{GC}_1 \Rightarrow \text{GC}_2$
Some accounts on the relation between Loeb measure and Haar measure show: $\text{GC}_1 \Rightarrow \text{GC}_2$

I gave a more direct and clear proof of GC_2 by similar methods like those in GC_1.
Recall, for $f \in \mathcal{C}^*_G$, $1 \leq p < \infty$,

$$\|f\|_p = \|f\|_{p,d} = \left(\sum_{x \in G} |f(x)|^p \right)^{1/p}$$

$$\|f\|_\infty = \max_{x \in G} |f(x)|$$

Similarly, for $\varphi \in \mathcal{C}_b^*G$, with normalizing multiplier

$$\hat{d} = \left(\sum_{g \in G} |\varphi(g)| \right)^{-1}$$

$f \in \mathcal{C}^*_G$ is called S_p-continuous if

$$\|f_a - f\|_p \approx 0 \text{ for } a \in G_0,$$

where $f_a(x) = f(x + a)$ is the a-shift of f.

$\varphi \in \mathcal{C}^*_bG$ is called S_p-continuous if

$$\|\varphi_\gamma - \varphi\|_p \approx 0 \text{ for } \gamma \in G_\sim f,$$

where $\varphi_\gamma(\chi) = \varphi(\gamma \chi)$ is the γ-shift of φ.

S_∞-continuous is just S_1-continuous.
Recall, for $f \in \mathbb{C}^G$, $1 \leq p < \infty$, d normalizing multiplier:
Recall, for $f \in \mathbb{C}^G$, $1 \leq p < \infty$, d normalizing multiplier:

$$
\|f\|_p = \|f\|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}
$$
Recall, for \(f \in ^*\mathbb{C}^G \), \(1 \leq p < \infty \), \(d \) normalizing multiplier:

\[
\| f \|_p = \| f \|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}
\]

\[
\| f \|_\infty = \max_{x \in G} |f(x)|
\]
Recall, for \(f \in \ast \mathbb{C}^G \), \(1 \leq p < \infty \), \(d \) normalizing multiplier:

\[
\| f \|_p = \| f \|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}
\]

\[
\| f \|_\infty = \max_{x \in G} |f(x)|
\]

Similarly, for \(\phi \in \ast \mathbb{C}^{\hat{G}} \), with normalizing multiplier
\(\hat{d} = (d |G|)^{-1} \)
Recall, for $f \in \ast \mathbb{C}^G$, $1 \leq p < \infty$, d normalizing multiplier:

$$\|f\|_p = \|f\|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}$$

$$\|f\|_\infty = \max_{x \in G} |f(x)|$$

Similarly, for $\phi \in \ast \mathcal{C}^\hat{G}$, with normalizing multiplier $\hat{d} = (d |G|)^{-1}$

$$f \in \ast \mathbb{C}^G$$ is called S^p-continuous if $\|f_a - f\|_p \approx 0$ for $a \in G_0$, where $f_a(x) = f(x+a)$ is the a-shift of f.
Recall, for $f \in \ast \mathbb{C}^G$, $1 \leq p < \infty$, d normalizing multiplier:

$$
\|f\|_p = \|f\|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}
$$

$$
\|f\|_{\infty} = \max_{x \in G} |f(x)|
$$

Similarly, for $\phi \in \ast \mathbb{C}^{\hat{G}}$, with normalizing multiplier

$$
\hat{d} = (d |G|)^{-1}
$$

$f \in \ast \mathbb{C}^G$ is called S^p-continuous if $\|f_a - f\|_p \approx 0$ for $a \in G_0$, where $f_a(x) = f(x + a)$ is the a-shift of f.
Recall, for $f \in \mathcal{C}_G^*$, $1 \leq p < \infty$, d normalizing multiplier:

$$
\|f\|_p = \|f\|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}
$$

$$
\|f\|_\infty = \max_{x \in G} |f(x)|
$$

Similarly, for $\phi \in \mathcal{C}_{\hat{G}}^*$, with normalizing multiplier

$$
\hat{d} = (d |G|)^{-1}
$$

$f \in \mathcal{C}_G^*$ is called S^p-continuous if $\|f_a - f\|_p \approx 0$ for $a \in G_0$, where $f_a(x) = f(x + a)$ is the a-shift of f.

$\phi \in \mathcal{C}_{\hat{G}}^*$ is called S^p-continuous if $\|\phi_\gamma - \phi\|_p \approx 0$ for $\gamma \in G_f^\perp$, where
Recall, for \(f \in \mathbb{C}^G \), \(1 \leq p < \infty \), \(d \) normalizing multiplier:

\[
\|f\|_p = \|f\|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}
\]

\[
\|f\|_\infty = \max_{x \in G} |f(x)|
\]

Similarly, for \(\phi \in \mathbb{C}^\widehat{G} \), with normalizing multiplier \(\hat{d} = (d |G|)^{-1} \)

\(f \in \mathbb{C}^G \) is called \(S^p \)-continuous if \(\|f_a - f\|_p \approx 0 \) for \(a \in G_0 \), where \(f_a(x) = f(x + a) \) is the \(a \)-shift of \(f \).

\(\phi \in \mathbb{C}^\widehat{G} \) is called \(S^p \)-continuous if \(\|\phi_\gamma - \phi\|_p \approx 0 \) for \(\gamma \in G^\perp_f \), where \(\phi_\gamma(\chi) = \phi(\gamma \chi) \) is the \(\gamma \)-shift of \(\phi \).
Recall, for \(f \in \star \mathbb{C}^G \), \(1 \leq p < \infty \), \(d \) normalizing multiplier:

\[
\|f\|_p = \|f\|_{p,d} = \left(d \sum_{x \in G} |f(x)|^p \right)^{1/p}
\]

\[
\|f\|_\infty = \max_{x \in G} |f(x)|
\]

Similarly, for \(\phi \in \star \mathbb{C}^{\hat{G}} \), with normalizing multiplier \(\hat{d} = (d |G|)^{-1} \)

\(f \in \star \mathbb{C}^G \) is called \(S^p \)-continuous if \(\|f_a - f\|_p \approx 0 \) for \(a \in G_0 \), where \(f_a(x) = f(x + a) \) is the \(a \)-shift of \(f \).

\(\phi \in \star \mathbb{C}^{\hat{G}} \) is called \(S^p \)-continuous if \(\|\phi_\gamma - \phi\|_p \approx 0 \) for \(\gamma \in G_f^\perp \), where \(\phi_\gamma(\chi) = \phi(\gamma \chi) \) is the \(\gamma \)-shift of \(\phi \).

- \(S^\infty \)-continuous is just \(S \)-continuous
Recall:

\[L^p(G,G_0,G_f) = \{ f \in \hat{\mathcal{C}}_G; f \text{ lifts some } f \in L^p(G,m) \} \]

\[C^0(G,G_0,G_f) = \{ f \in \hat{\mathcal{C}}_G; f \text{ lifts some } f \in C^0(G) \} \]

\[C^b(G,G_0,G_f) = \{ f \in \hat{\mathcal{C}}_G; f \text{ lifts some } f \in C^b(G) \} \]

Characterization of liftings.

Let \(f \in \hat{\mathcal{C}}_G \). Then \(f \in L^p(G,G_0,G_f) \) iff

- \(\| f \|_p < \infty \)
- \(\sum_{z \in \mathbb{Z}} |f(z)|^p \approx 0 \) for internal \(\mathbb{Z} \subseteq G \setminus G_f \)
- \(f \) is \(S_p \)-continuous
Recall:

\[
L^p(G; G_0; G_f) = \{ f \in \hat{C}_G; \text{f lifts some } f \in L^p(G; \mathbb{m}) \}
\]

\[
C_0(G; G_0; G_f) = \{ f \in \hat{C}_G; \text{f lifts some } f \in C_0(G) \}
\]

\[
C_b(G; G_0; G_f) = \{ f \in \hat{C}_G; \text{f lifts some } f \in C_b(G) \}
\]
Recall:

\[L^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; f \text{ lifts some } f \in L^p(G, m_d) \} \]
Recall:

\[L^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in L^p(G, m_d) \} \]

\[C_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in C_0(G) \} \]
Recall:

\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in L^p(G, m_d) \} \]
\[\mathcal{C}_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in C_0(G) \} \]
\[\mathcal{C}_b(G, G_0) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in C_{bu}(G) \} \]
Recall:

\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; f \text{ lifts some } f \in L^p(G, m_d) \} \]

\[\mathcal{C}_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; f \text{ lifts some } f \in C_0(G) \} \]

\[\mathcal{C}_b(G, G_0) = \{ f \in \ast \mathbb{C}^G; f \text{ lifts some } f \in C_{bu}(G) \} \]

Characterization of liftings.
Recall:

\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \, f \text{ lifts some } f \in L^p(G, m_d) \} \]
\[C_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \, f \text{ lifts some } f \in C_0(G) \} \]
\[C_b(G, G_0) = \{ f \in \ast \mathbb{C}^G; \, f \text{ lifts some } f \in C_{bu}(G) \} \]

Characterization of liftings.

Let \(f \in \ast \mathbb{C}^G \). Then \(f \in \mathcal{L}^p(G, G_0, G_f) \) iff
Recall:

\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in L^p(G, m_d) \}\]
\[\mathcal{C}_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in \mathcal{C}_0(G) \}\]
\[\mathcal{C}_b(G, G_0) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in \mathcal{C}_{bu}(G) \}\]

Characterization of liftings.

Let \(f \in \ast \mathbb{C}^G \). Then \(f \in \mathcal{L}^p(G, G_0, G_f) \) iff

\[\|f\|_p < \infty\]
Recall:

\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in L^p(G, m_d) \} \]
\[\mathcal{C}_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in \mathcal{C}_0(G) \} \]
\[\mathcal{C}_b(G, G_0) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in \mathcal{C}_{bu}(G) \} \]

Characterization of liftings.

Let \(f \in \ast \mathbb{C}^G \). Then \(f \in \mathcal{L}^p(G, G_0, G_f) \) iff

- \(\|f\|_p < \infty \)
- \(d \sum_{z \in Z} |f(z)|^p \approx 0 \) for internal \(Z \subseteq G \setminus G_f \)
Recall:

\[\mathcal{L}_p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in L^p(G, \mathfrak{m}_d) \} \]

\[\mathcal{C}_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in C_0(G) \} \]

\[\mathcal{C}_b(G, G_0) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in C_{bu}(G) \} \]

Characterization of liftings.

Let \(f \in \ast \mathbb{C}^G \). Then \(f \in \mathcal{L}_p(G, G_0, G_f) \) iff

- \(\| f \|_p < \infty \)
- \(d \sum_{z \in Z} |f(z)|^p \approx 0 \) for internal \(Z \subseteq G \setminus G_f \)
- \(f \) is \(S^p \)-continuous
Recall:

\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \mathcal{C}^G; \ f \text{ lifts some } f \in L^p(G, m_d) \} \]
\[\mathcal{C}_0(G, G_0, G_f) = \{ f \in \mathcal{C}^G; \ f \text{ lifts some } f \in C_0(G) \} \]
\[\mathcal{C}_b(G, G_0) = \{ f \in \mathcal{C}^G; \ f \text{ lifts some } f \in C_{bu}(G) \} \]

Characterization of liftings.

Let \(f \in \mathcal{C}^G \). Then \(f \in \mathcal{L}^p(G, G_0, G_f) \) iff

- \(\|f\|_p < \infty \)
- \(d \sum_{z \in Z} |f(z)|^p \approx 0 \) for internal \(Z \subseteq G \setminus G_f \)
- \(f \) is \(S^p \)-continuous
Recall:
\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in L^p(G, m_d) \} \]
\[\mathcal{C}_0(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in C_0(G) \} \]
\[\mathcal{C}_b(G, G_0) = \{ f \in \ast \mathbb{C}^G; \ f \text{ lifts some } f \in C_{bu}(G) \} \]

Characterization of liftings.

Let \(f \in \ast \mathbb{C}^G \). Then \(f \in \mathcal{L}^p(G, G_0, G_f) \) iff

- \(\| f \|_p < \infty \)
- \(d \sum_{z \in Z} |f(z)|^p \approx 0 \) for internal \(Z \subseteq G \setminus G_f \)
- \(f \) is \(S^p \)-continuous

\[\mathcal{L}^p(G, G_0, G_f) = \{ f \in \ast \mathbb{C}^G; \ f^p \in M(G, G_f, d) \ \& \ f \text{ is } S^p\text{-continuous} \} \]
Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \ast C(G)$, $\|f\|_p < \infty$. Then

- f is S_p-continuous $\Rightarrow (\hat{f})^q \in M(\hat{G}, \hat{G})$.
- $f^p \in M(G, G, d) \Rightarrow \hat{f}$ is S_q-continuous.
- $f \in L^p(G, G, 0, G) \Rightarrow \hat{f} \in L^q(\hat{G}, \hat{G})$.

In particular:

- $f \in L^1(G, G, 0, G) \Rightarrow \hat{f} \in C_0(\hat{G}, \hat{G})$ (HF dimensional version of Riemann-Lebesgue thm.)
- $f \in L^2(G, G, 0, G) \Leftrightarrow \hat{f} \in L^2(\hat{G}, \hat{G})$ (in some special cases proved by Albeverio-Gordon-Khrennikov [2000])
- $f \in M(G, G, d) \Rightarrow \hat{f} \in C_b(\hat{G}, \hat{G})$.

Smoothness-and-Decay Principle.
Smoothness-and-Decay Principle.
Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \mathcal{C}^G$, $\|f\|_p < \infty$. Then
Smoothness-and-Decay Principle.

Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in {}^\ast \mathcal{C}^G$, $\|f\|_p < \infty$. Then

- f is S^p-continuous \Rightarrow $({\hat{f}})^q \in \mathcal{M}(\hat{\mathcal{G}}, G_0^\perp, \hat{d})$
Smoothness-and-Decay Principle.
Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \ast \mathbb{C}^G$, $\|f\|_p < \infty$. Then

- f is S^p-continuous $\Rightarrow (\hat{f})^q \in \mathcal{M}(\hat{G}, G_0^\perp, \hat{d})$
- $f^p \in \mathcal{M}(G, G_f, d) \Rightarrow \hat{f}$ is S^q-continuous
Smoothness-and-Decay Principle.

Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \mathcal{C}^G$, $\|f\|_p < \infty$. Then

- f is S^p-continuous \Rightarrow $(\hat{f})^q \in \mathcal{M}(\hat{G}, \hat{G}_0, \hat{d})$
- $f^p \in \mathcal{M}(G, G_f, d)$ \Rightarrow \hat{f} is S^q-continuous
- $f \in \mathcal{L}^p(G, G_0, G_f)$ \Rightarrow $\hat{f} \in \mathcal{L}^q(\hat{G}, \hat{G}_f, \hat{G}_0)$
Smoothness-and-Decay Principle.

Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \mathcal{C}^G$, $\|f\|_p < \infty$. Then

- f is S^p-continuous \Rightarrow $(\hat{f})^q \in \mathcal{M}(\hat{G}, G_0^\perp, \hat{d})$
- $f^p \in \mathcal{M}(G, G_\text{f}, d) \Rightarrow \hat{f}$ is S^q-continuous
- $f \in \mathcal{L}^p(G, G_0, G_\text{f}) \Rightarrow \hat{f} \in \mathcal{L}^q(\hat{G}, G_\text{f}^\perp, G_0^\perp)$
Smoothness-and-Decay Principle.

Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \mathcal{C}^G$, $\|f\|_p < \infty$. Then

- f is S^p-continuous \Rightarrow $(\hat{f})^q \in \mathcal{M}(\hat{G}, G_0^\perp, \hat{d})$
- $f^p \in \mathcal{M}(G, G_f, d)$ \Rightarrow \hat{f} is S^q-continuous
- $f \in \mathcal{L}^p(G, G_0, G_f)$ \Rightarrow $\hat{f} \in \mathcal{L}^q(\hat{G}, G_f^\perp, G_0^\perp)$

In particular:
Smoothness-and-Decay Principle.

Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in ^*\mathbb{C}^G$, $\|f\|_p < \infty$. Then

- f is S^p-continuous $\Rightarrow (\hat{f})^q \in \mathcal{M}(\hat{G}, G_0^\perp, \hat{d})$
- $f^p \in \mathcal{M}(G, G_f, d) \Rightarrow \hat{f}$ is S^q-continuous
- $f \in \mathcal{L}^p(G, G_0, G_f) \Rightarrow \hat{f} \in \mathcal{L}^q(\hat{G}, G_f^\perp, G_0^\perp)$

In particular:

- $f \in \mathcal{L}^1(G, G_0, G_f) \Rightarrow \hat{f} \in \mathcal{C}_0(\hat{G}, G_f^\perp, G_0^\perp)$
 (HF dimensional version of Riemann-Lebesgue thm.)
Smoothness-and-Decay Principle.
Let \(1 \leq p \leq 2 \leq q \leq \infty \), \(\frac{1}{p} + \frac{1}{q} = 1 \), \(f \in \mathcal{C}^G \), \(\|f\|_p < \infty \). Then
\[
\begin{align*}
\bullet & \quad f \text{ is } S^p\text{-continuous} \Rightarrow (\hat{f})^q \in \mathcal{M}(\hat{G}, G_0^\perp, \hat{d}) \\
\bullet & \quad f^p \in \mathcal{M}(G, G_f, d) \Rightarrow \hat{f} \text{ is } S^q\text{-continuous} \\
\bullet & \quad f \in \mathcal{L}^p(G, G_0, G_f) \Rightarrow \hat{f} \in \mathcal{L}^q(\hat{G}, G_f^\perp, G_0^\perp)
\end{align*}
\]
In particular:
\[
\begin{align*}
\bullet & \quad f \in \mathcal{L}^1(G, G_0, G_f) \Rightarrow \hat{f} \in \mathcal{C}_0(\hat{G}, G_f^\perp, G_0^\perp) \\
& \quad \text{(HF dimensional version of Riemann-Lebesgue thm.)} \\
\bullet & \quad f \in \mathcal{L}^2(G, G_0, G_f) \iff \hat{f} \in \mathcal{L}^2(\hat{G}, G_f^\perp, G_0^\perp) \\
& \quad \text{(in some special cases proved by Albeverio-Gordon-Khrennikov [2000])}
\end{align*}
\]
Smoothness-and-Decay Principle.

Let $1 \leq p \leq 2 \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \mathcal{C}^G$, $\|f\|_p < \infty$. Then

- f is S^p-continuous \Rightarrow $(\widehat{f})^q \in \mathcal{M}(\widehat{G}, G_0^\perp, \hat{d})$
- $f^p \in \mathcal{M}(G, G_f, d) \Rightarrow \hat{f}$ is S^q-continuous
- $f \in \mathcal{L}^p(G, G_0, G_f) \Rightarrow \hat{f} \in \mathcal{L}^q(\widehat{G}, G_f^\perp, G_0^\perp)$

In particular:

- $f \in \mathcal{L}^1(G, G_0, G_f) \Rightarrow \hat{f} \in \mathcal{C}_0(\widehat{G}, G_f^\perp, G_0^\perp)$
 (HF dimensional version of Riemann-Lebesgue thm.)
- $f \in \mathcal{L}^2(G, G_0, G_f) \Leftrightarrow \hat{f} \in \mathcal{L}^2(\widehat{G}, G_f^\perp, G_0^\perp)$
 (in some special cases proved by Albeverio-Gordon-Khrennikov [2000])
- $f \in \mathcal{M}(G, G_f, d) \Rightarrow \hat{f} \in \mathcal{C}_b(\widehat{G}, G_f^\perp)$
Approximation of Fourier transform.

\[G = G_f / G_0, \hat{G} = G_\sim / G_{\sim f}, \]

\(f \mapsto \hat{f} \) – discrete HF dimensional FT

Discrete HF dimensional FT approximates all the classical FTs:

- \(F: L^1(G) \to C_0(\hat{G}) \): \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \hat{f} \in C_0(\hat{G}) \) is lifting of \(F(f) \in C_0(\hat{G}) \)

- \(F: L^p(G) \to L^q(\hat{G}) \): \(f \in L^p(G) \) is lifting of \(f \in L^p(G) \) \(\Rightarrow \hat{f} \in L^q(\hat{G}) \) is lifting of \(F(f) \in L^q(\hat{G}) \) for \(p = q = 2 \) this settles Gordon's Conjecture 3 [PZ, October 2012]

- \(F: M(G) \to C_{bu}(\hat{G}) \): \(g \in M(G) \) is lifting of \(\mu \in M(G) \) \(\Rightarrow \hat{g} \in C_{bu}(\hat{G}) \) is lifting of \(F(\mu) \in C_{bu}(\hat{G}) \)
Approximation of Fourier transform.
Approximation of Fourier transform.

\[\mathbf{G} = G_f / G_0, \quad \hat{\mathbf{G}} = G_0^{\perp} / G_f^{\perp}, \]

\[f \mapsto \hat{f} \quad - \text{discrete HF dimensional FT} \quad \mathbb{C}^\mathbf{G} \to \mathbb{C}^{\hat{\mathbf{G}}} \]
Approximation of Fourier transform.

\[G = G_f/G_0, \quad \hat{G} = G_0^\perp/G_f^\perp, \]

\[f \mapsto \hat{f} \quad \text{discrete HF dimensional FT} \quad *\mathbb{C}^G \rightarrow *\mathbb{C}^\hat{G} \]

Discrete HF dimensional FT approximates all the classical FTs:
Approximation of Fourier transform.

$G = G_f / G_0$, $\hat{G} = G_0^\perp / G_f^\perp$,

$f \mapsto \hat{f}$ – discrete HF dimensional FT $\ast \mathbb{C}^G \rightarrow \ast \mathbb{C}^{\hat{G}}$

Discrete HF dimensional FT approximates all the classical FTs:

- $\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G})$:
Approximation of Fourier transform.

\[G = G_f/G_0, \quad \hat{G} = G_0^\perp/G_f^\perp, \]

\[f \mapsto \hat{f} \quad \text{discrete HF dimensional FT} \quad \mathbb{C}^G \rightarrow \mathbb{C}^\hat{G} \]

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G}) : \)
Approximation of Fourier transform.
\[G = \frac{G_f}{G_0}, \quad \hat{G} = \frac{G_0^\perp}{G_f^\perp}, \]
\[f \mapsto \hat{f} \quad \text{discrete HF dimensional FT} \quad \mathbb{C}^G \to \mathbb{C}^{\hat{G}} \]
Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) : \)
 \(f \in \mathcal{L}^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
Approximation of Fourier transform.

\(\mathbb{G} = G_f / G_0, \ \hat{\mathbb{G}} = G_0^\perp / G_f^\perp, \)

\(f \mapsto \hat{f} \) – discrete HF dimensional FT \(*\mathbb{C}^G \to *\mathbb{C}^{\hat{G}} \)

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : \mathcal{L}^1(\mathbb{G}) \to \mathcal{C}_0(\hat{\mathbb{G}}) : \\
 \quad f \in \mathcal{L}^1(\mathbb{G}) \text{ is lifting of } f \in \mathcal{L}^1(\mathbb{G}) \Rightarrow \\
 \quad \hat{f} \in \mathcal{C}_0(\hat{\mathbb{G}}) \text{ is lifting of } \mathcal{F}(f) \in \mathcal{C}_0(\hat{\mathbb{G}}) \)
Approximation of Fourier transform.

\(G = G_f / G_0, \quad \hat{G} = G_0^\perp / G_f^\perp \),

\(f \mapsto \hat{f} \) – discrete HF dimensional FT \(*\mathbb{C}^G \rightarrow *\mathbb{C}^{\hat{G}} \)

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G}) : \)
 \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
 \(\hat{f} \in C_0(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in C_0(\hat{G}) \)

- \(\mathcal{F} : L^p(G) \rightarrow L^q(\hat{G}) \) (\(1 < p \leq 2, \ \frac{1}{p} + \frac{1}{q} = 1 \)):
Approximation of Fourier transform.

\[G = G_f / G_0, \quad \hat{G} = G_{0}^{\perp} / G_{f}^{\perp}, \]

\[f \mapsto \hat{f} \quad \text{– discrete HF dimensional FT} \quad \mathbb{C}^G \rightarrow \mathbb{C}^\hat{G} \]

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : \mathbb{L}^1(G) \rightarrow \mathbb{C}_0(\hat{G}) : \)
 \[f \in \mathbb{L}^1(G) \quad \text{is lifting of} \quad f \in \mathbb{L}^1(G) \Rightarrow \]
 \[\hat{f} \in \mathbb{C}_0(\hat{G}) \quad \text{is lifting of} \quad \mathcal{F}(f) \in \mathbb{C}_0(\hat{G}) \]

- \(\mathcal{F} : \mathbb{L}^p(G) \rightarrow \mathbb{L}^q(\hat{G}) \quad (1 < p \leq 2, \quad \frac{1}{p} + \frac{1}{q} = 1) : \)
Approximation of Fourier transform.

\(G = G_f/G_0, \ \hat{G} = G_0^\perp / G_f^\perp, \)

\(f \mapsto \hat{f} \) – discrete HF dimensional FT \(\mathbb{C}^G \rightarrow \mathbb{C}^{\hat{G}} \)

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G}) : \)
 \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
 \(\hat{f} \in C_0(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in C_0(\hat{G}) \)

- \(\mathcal{F} : L^p(G) \rightarrow L^q(\hat{G}) \) (\(1 < p \leq 2, \ \frac{1}{p} + \frac{1}{q} = 1 \)):
 \(f \in L^p(G) \) is lifting of \(f \in L^p(G) \) \(\Rightarrow \)
Approximation of Fourier transform.

\(G = G_f / G_0, \quad \hat{G} = G_0^\perp / G_f^\perp,\)

\(f \mapsto \hat{f} - \text{ discrete HF dimensional FT } \ast \mathbb{C}^G \rightarrow \ast \mathbb{C}^{\hat{G}}\)

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G}) :\)
 \(f \in L^1(G) \text{ is lifting of } f \in L^1(G) \Rightarrow\)
 \(\hat{f} \in C_0(\hat{G}) \text{ is lifting of } \mathcal{F}(f) \in C_0(\hat{G})\)

- \(\mathcal{F} : L^p(G) \rightarrow L^q(\hat{G}) \quad (1 < p \leq 2, \quad \frac{1}{p} + \frac{1}{q} = 1) :\)
 \(f \in L^p(G) \text{ is lifting of } f \in L^p(G) \Rightarrow\)
 \(\hat{f} \in L^q(\hat{G}) \text{ is lifting of } \mathcal{F}(f) \in L^q(\hat{G})\)
Approximation of Fourier transform.

\(G = G_f/G_0, \ \hat{G} = G_0/\tilde{G}_f, \)

\(f \mapsto \hat{f} \) – discrete HF dimensional FT \(\mathbb{C}^G \to \mathbb{C}^{\hat{G}} \)

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) : \)
 \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
 \(\hat{f} \in C_0(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in C_0(\hat{G}) \)

- \(\mathcal{F} : L^p(G) \to L^q(\hat{G}) \) \((1 < p \leq 2, \ \frac{1}{p} + \frac{1}{q} = 1) : \)
 \(f \in L^p(G) \) is lifting of \(f \in L^p(G) \) \(\Rightarrow \)
 \(\hat{f} \in L^q(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in L^q(\hat{G}) \)

for \(p = q = 2 \) this settles Gordon’s Conjecture 3
Approximation of Fourier transform.
\[\mathbb{G} = G_f / G_0, \quad \hat{\mathbb{G}} = G_0^\perp / G_f^\perp, \]
\[f \mapsto \hat{f} \quad \text{discrete HF dimensional FT} \quad \mathbb{C}^G \rightarrow \mathbb{C}^{\hat{G}} \]

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(\mathbb{G}) \rightarrow C_0(\hat{\mathbb{G}}) : \)
 \[f \in \mathcal{L}^1(\mathbb{G}) \text{ is lifting of } f \in L^1(\mathbb{G}) \Rightarrow \]
 \[\hat{f} \in C_0(\hat{\mathbb{G}}) \text{ is lifting of } \mathcal{F}(f) \in C_0(\hat{\mathbb{G}}) \]

- \(\mathcal{F} : L^p(\mathbb{G}) \rightarrow L^q(\hat{\mathbb{G}}) \ (1 < p \leq 2, \ \frac{1}{p} + \frac{1}{q} = 1) : \)
 \[f \in \mathcal{L}^p(\mathbb{G}) \text{ is lifting of } f \in L^p(\mathbb{G}) \Rightarrow \]
 \[\hat{f} \in \mathcal{L}^q(\hat{\mathbb{G}}) \text{ is lifting of } \mathcal{F}(f) \in L^q(\hat{\mathbb{G}}) \]
 for \(p = q = 2 \) this settles **Gordon’s Conjecture 3**
 [PZ, October 2012]
Approximation of Fourier transform.

\(G = G_f / G_0, \quad \hat{G} = G_0^\perp / G_f^\perp, \)

\(f \mapsto \hat{f} \) — discrete HF dimensional FT

Discrete HF dimensional FT approximates all the classical FTs:

- \(F : L^1(G) \to C_0(\hat{G}) : \)
 \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
 \(\hat{f} \in C_0(\hat{G}) \) is lifting of \(F(f) \in C_0(\hat{G}) \)

- \(F : L^p(G) \to L^q(\hat{G}) \) (\(1 < p \leq 2, \frac{1}{p} + \frac{1}{q} = 1 \)):
 \(f \in L^p(G) \) is lifting of \(f \in L^p(G) \) \(\Rightarrow \)
 \(\hat{f} \in L^q(\hat{G}) \) is lifting of \(F(f) \in L^q(\hat{G}) \)

for \(p = q = 2 \) this settles **Gordon’s Conjecture 3**

[PZ, October 2012]

- \(F : M(G) \to C_{bu}(\hat{G}) : \)
Approximation of Fourier transform.

\(G = G_f / G_0, \hat{G} = G_0^\perp / G_f^\perp, \)

\(f \mapsto \hat{f} \) – discrete HF dimensional FT *\(\mathbb{C}^G \rightarrow \mathbb{C}^{\hat{G}} \)

Discrete HF dimensional FT approximates all the classical FTs:

- **\(\mathcal{F} : L^1(G) \rightarrow C_0(\hat{G}) : \)**
 \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
 \(\hat{f} \in C_0(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in C_0(\hat{G}) \)

- **\(\mathcal{F} : L^p(G) \rightarrow L^q(\hat{G}) \) (1 < \(p \leq 2, \frac{1}{p} + \frac{1}{q} = 1) : \)**
 \(f \in L^p(G) \) is lifting of \(f \in L^p(G) \) \(\Rightarrow \)
 \(\hat{f} \in L^q(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in L^q(\hat{G}) \)
 for \(p = q = 2 \) this settles **Gordon’s Conjecture 3**
 [PZ, October 2012]

- **\(\mathcal{F} : M(G) \rightarrow C_{bu}(\hat{G}) : \)**
Approximation of Fourier transform.

\(G = G_f/G_0, \quad \hat{G} = G_0^\perp/G_f^\perp, \)

\(f \mapsto \hat{f} \) – discrete HF dimensional FT \(\ast \mathbb{C}^G \to \ast \mathbb{C}^{\hat{G}} \)

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) : \)
 \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
 \(\hat{f} \in C_0(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in C_0(\hat{G}) \)

- \(\mathcal{F} : L^p(G) \to L^q(\hat{G}) \) (\(1 < p \leq 2, \quad \frac{1}{p} + \frac{1}{q} = 1 \)) :
 \(f \in L^p(G) \) is lifting of \(f \in L^p(G) \) \(\Rightarrow \)
 \(\hat{f} \in L^q(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in L^q(\hat{G}) \)

for \(p = q = 2 \) this settles **Gordon’s Conjecture 3**

[PZ, October 2012]

- \(\mathcal{F} : M(G) \to C_{bu}(\hat{G}) : \)
 \(g \in M(G) \) is lifting of \(\mu \in M(G) \) \(\Rightarrow \)
Approximation of Fourier transform.

\(G = G_f/G_0, \ \hat{G} = G_0^\perp/G_f^\perp, \)

\(f \mapsto \hat{f} \) – discrete HF dimensional FT ★ \(\mathbb{C}^G \to \mathbb{C}^{\hat{G}} \)

Discrete HF dimensional FT approximates all the classical FTs:

- \(\mathcal{F} : L^1(G) \to C_0(\hat{G}) : \)
 \(f \in L^1(G) \) is lifting of \(f \in L^1(G) \) \(\Rightarrow \)
 \(\hat{f} \in C_0(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in C_0(\hat{G}) \)

- \(\mathcal{F} : L^p(G) \to L^q(\hat{G}) \) (1 < \(p \leq 2, \ \frac{1}{p} + \frac{1}{q} = 1 \) :)
 \(f \in L^p(G) \) is lifting of \(f \in L^p(G) \) \(\Rightarrow \)
 \(\hat{f} \in L^q(\hat{G}) \) is lifting of \(\mathcal{F}(f) \in L^q(\hat{G}) \)

for \(p = q = 2 \) this settles \textbf{Gordon’s Conjecture 3} [PZ, October 2012]

- \(\mathcal{F} : M(G) \to C_{bu}(\hat{G}) : \)
 \(g \in M(G) \) is lifting of \(\mu \in M(G) \) \(\Rightarrow \)
 \(\hat{g} \in C_{b}(\hat{G}) \) is lifting of \(\mathcal{F}(\mu) \in C_{bu}(\hat{G}) \)
TYFYAP

Thank you for your attention and patience.