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Pontryagin-vanKampen Duality Fourier Transform Nonstandard Analysis PvK Duality & FT in HF Ambience

Pontryagin-vanKampen Duality 1

G = (G,+, τ) is a locally compact abelian group (LCA group)

T = {c ∈ C; |c| = 1} – the (compact) group of complex units

Ĝ = Hom(G,T) ∩ C(G)
all continuous characters (homomorphisms) G→ T

pointwise multiplication in Ĝ :
(γ · χ)(x) = γ(x)χ(x) for γ, χ ∈ Ĝ, x ∈ G

Bohr sets in Ĝ, for A ⊆ G, 0 < α ≤ π,
Bα(A) =

{
χ ∈ Ĝ; ∀ a ∈ A : |argχ(a)| ≤ α

}
similarly, for Γ ⊆ Ĝ, we have Bohr sets in G

Bα(Γ ) =
{
x ∈ G; ∀ γ ∈ Γ : |arg γ(x)| ≤ α

}
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(γ · χ)(x) = γ(x)χ(x) for γ, χ ∈ Ĝ, x ∈ G
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Ĝ = Hom(G,T) ∩ C(G)
all continuous characters (homomorphisms) G→ T

pointwise multiplication in Ĝ :
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Pontryagin-vanKampen Duality 2

• Ĝ is an LCA group with pointwise multiplication and
compact-open topology – dual group of G

• neighborhood bases of the trivial character 1G ∈ Ĝ{
Bα(A); 0 ∈ A ⊆ G is compact and 0 < α < 2π/3

}

Examples.

• Ĝ×H ∼= Ĝ× Ĥ
• Ẑn

∼= Zn: a ∈ Zn corresponds to the character
k 7→ e2πiak/n

• Ĝ ∼= G for each finite abelian group G

• Ẑ ∼= T: c ∈ T corresponds to the character n 7→ cn

• T̂ ∼= Z: n ∈ Z corresponds to the character c→ cn

• R̂ ∼= R: a ∈ R corresponds to the character t 7→ eiat
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• Ĝ×H ∼= Ĝ× Ĥ
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Pontryagin-vanKampen Duality 3

Pontryagin-vanKampen duality theorem.

The natural mapping G→ ̂̂
G, assigning to x ∈ G

the character x : Ĝ→ T, given by x(γ) = γ(x) for γ ∈ Ĝ,

is isomorphism of topological groups G ∼= ̂̂
G.

Consequences.

• G is discrete (compact) iff Ĝ is compact (discrete)
• G is metrizable (σ-compact) iff Ĝ is σ-compact

(metrizable)
• Subgroup D ≤ Ĝ is dense in Ĝ iff the characters γ ∈ D

separate points in G
• G is connected iff Ĝ has no nontrivial compact subgroups
• G is totally disconnected iff each γ ∈ Ĝ generates a

relatively compact subgroup
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• G is metrizable (σ-compact) iff Ĝ is σ-compact
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is isomorphism of topological groups G ∼= ̂̂
G.

Consequences.

• G is discrete (compact) iff Ĝ is compact (discrete)
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relatively compact subgroup



Pontryagin-vanKampen Duality Fourier Transform Nonstandard Analysis PvK Duality & FT in HF Ambience

Pontryagin-vanKampen Duality 3

Pontryagin-vanKampen duality theorem.

The natural mapping G→ ̂̂
G, assigning to x ∈ G
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Fourier Transform 1

mG, m bG denote Haar measures on G, Ĝ, resp.

• f̂(γ) =
∫
f · γ dmG =

∫
f(x) γ(x) dmG(x)

for f ∈ L1(G) = L1(G,mG), γ ∈ Ĝ
• f̂ is the Fourier transform of f ,

∥∥f̂ ∥∥
∞
≤ ‖f‖1

• f 7→ F(f) = f̂ defines bounded linear operator
F : L1(G)→ C0

(
Ĝ

)
• F = FG is called the Fourier transform on G

• L1(G) is associative algebra under convolution
(f ∗ g)(x) =

∫
f(x− t) g(t) dmG(t)

• C0

(
Ĝ

)
is associative algebra under pointwise multiplication

(ϕ · ψ)(γ) = ϕ(γ)ψ(γ)

• F(f ∗ g) = F(f)F(g), f̂ ∗ g = f̂ ĝ
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Ĝ

)
is associative algebra under pointwise multiplication

(ϕ · ψ)(γ) = ϕ(γ)ψ(γ)

• F(f ∗ g) = F(f)F(g), f̂ ∗ g = f̂ ĝ
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Ĝ

)
• F = FG is called the Fourier transform on G

• L1(G) is associative algebra under convolution

(f ∗ g)(x) =
∫
f(x− t) g(t) dmG(t)

• C0

(
Ĝ
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Ĝ

)
• F = FG is called the Fourier transform on G

• L1(G) is associative algebra under convolution
(f ∗ g)(x) =

∫
f(x− t) g(t) dmG(t)

• C0

(
Ĝ
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• f̂ is the Fourier transform of f ,

∥∥f̂ ∥∥
∞
≤ ‖f‖1

• f 7→ F(f) = f̂ defines bounded linear operator
F : L1(G)→ C0

(
Ĝ
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Fourier Transform 2

For finite abelian group G:

• F(f)(γ) = f̂(γ) = dG
∑

x∈G f(x) γ(x) = 〈f, γ〉G
dG > 0 is normalizing coefficient, typically
dG = 1 or 1/|G| or 1/

√
|G|

• 〈f, g〉G = dG
∑

x∈G f(x) g(x) – scalar product on CG

〈γ, χ〉G = |G| dG δγ,χ – characters are orthogonal

• FG : CG → C bG is linear isomorphism
• Fourier inversion formula and Plancherel identity
f = d bG ∑

γ∈ bG f̂(γ) γ 〈f, g〉G =
〈
f̂ , ĝ

〉 bG
hold once dG d bG = 1/|G|

• For G = Zn: f̂(a) = dG
∑

k∈Zn
f(k) e−2πiak/n

• For G = Zm × Zn:
f̂(a, b) = dG

∑
(k,l)∈Zm×Zn

f(k, l) e−2πi(ak+bl)/mn
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〉 bG
hold once dG d bG = 1/|G|

• For G = Zn: f̂(a) = dG
∑

k∈Zn
f(k) e−2πiak/n

• For G = Zm × Zn:
f̂(a, b) = dG

∑
(k,l)∈Zm×Zn

f(k, l) e−2πi(ak+bl)/mn



Pontryagin-vanKampen Duality Fourier Transform Nonstandard Analysis PvK Duality & FT in HF Ambience

Fourier Transform 2

For finite abelian group G:

• F(f)(γ) = f̂(γ) = dG
∑

x∈G f(x) γ(x) = 〈f, γ〉G
dG > 0 is normalizing coefficient, typically
dG = 1 or 1/|G| or 1/

√
|G|

• 〈f, g〉G = dG
∑

x∈G f(x) g(x) – scalar product on CG

〈γ, χ〉G = |G| dG δγ,χ – characters are orthogonal

• FG : CG → C bG is linear isomorphism
• Fourier inversion formula and Plancherel identity
f = d bG ∑

γ∈ bG f̂(γ) γ 〈f, g〉G =
〈
f̂ , ĝ
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Fourier Transform 3

In what follows 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1

• For 1 ≤ p <∞, L1(G) ∩ Lp(G) is dense in Lp(G)
w.r.t. the Lp-norm

• for 1 ≤ p ≤ 2, the restricted Fourier transform
F �

(
L1(G) ∩ Lp(G)

)
satisfies

∥∥f̂ ∥∥
q
≤ ‖f‖p for

f ∈ L1(G) ∩ Lp(G)
• it extends to the Fourier transform F : Lp(G)→ Lq

(
Ĝ

)
• for p = 2 we get the Fourier-Plancherel transform

which is an isometric isomorphism of Hilbert spaces
F : L2(G)→ L2

(
Ĝ

)
• proper normalization of Haar measures mG, m bG ensures

Plancherel identity and Fourier inversion formula
〈f, g〉G =

∫
f · g dmG =

∫
f̂ · ĝ dm bG =

〈
f̂ , ĝ

〉 bG
f(x) =

∫ bG f̂(γ) γ(x) dm bG(γ)
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Ĝ

)
• proper normalization of Haar measures mG, m bG ensures

Plancherel identity and Fourier inversion formula
〈f, g〉G =

∫
f · g dmG =

∫
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〉 bG
f(x) =

∫ bG f̂(γ) γ(x) dm bG(γ)



Pontryagin-vanKampen Duality Fourier Transform Nonstandard Analysis PvK Duality & FT in HF Ambience

Fourier Transform 3

In what follows 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1

• For 1 ≤ p <∞, L1(G) ∩ Lp(G) is dense in Lp(G)
w.r.t. the Lp-norm
• for 1 ≤ p ≤ 2, the restricted Fourier transform
F �

(
L1(G) ∩ Lp(G)

)
satisfies

∥∥f̂ ∥∥
q
≤ ‖f‖p for

f ∈ L1(G) ∩ Lp(G)
• it extends to the Fourier transform F : Lp(G)→ Lq

(
Ĝ
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Fourier Transform 4

M(G) is the Banach space of all complex-valued regular Borel
measures µ on G with bounded total variation ‖µ‖

• M(G) is nonseparable in general;
mG ∈ M(G) only if G is compact

• M(G) is the dual of C0(G): each µ ∈ M(G) defines
bounded linear functional g 7→

∫
g dµ on C0(G)

(Riesz representation theorem)
• L1(G) can be identified with the Banach subspace

{µ ∈ M(G); µ is absolutely continuous w.r.t. mG}
f ∈ L1(G) defines the functional g 7→

∫
gf dmG on C0(G)

(dµ = f dmG; Radon-Nikodym theorem)
• Fourier transform F : L1(G)→ C0

(
Ĝ

)
extends to

Fourier-Stieltjes transform µ 7→ F(µ) = µ̂
F : M(G)→ Cbu

(
Ĝ

)
, given by µ̂(γ) =

∫
γ dµ

• F(µ ∗ ν) = F(µ)F(ν), µ̂ ∗ ν = µ̂ ν̂
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Fourier Transform 5

Fourier inversion formula f =
∫
f̂(γ) γ dm bG(γ)

does not always hold.
Scalar product of characters 〈γ, χ〉G =

∫
γ · χdmG

is not defined unless G is compact.
For finite G all the above spaces coincide with CG, the scalar
product is everywhere defined, and the Fourier inversion
formula holds.
Fast Fourier Transform gives extremely powerful and fast
algorithms for FT on finite abelian groups.
Computations of FT on the Lp(G)s and M(G) are frequently
based on discrete approximations of G, sometimes by finite
abelian groups.
Isn’t there some “universal extension” of all the spaces Lp(G)
(1 ≤ p ≤ 2) and M(G), and a uniform scheme defining the
Fourier transform on this extension, covering all the particular
cases, like if G were finite?
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Nonstandard Analysis 1

Nonstandard analysis offers solution and additional insights.

NSA is a method based on application of mathematical logic to
other parts of mathematics, invented by A. Robinson (1960s).

T. Tao: One of the features of NSA, as opposed to its standard
counterparts, is that it efficiently conceals with all the epsilons
and deltas, that are so prevalent in standard analysis... As a
consequence, analysis acquires a much more algebraic flavour
when viewed through the nonstandard lens.

P. Vopěnka: Odmı́tnut́ı Newtonova a Lebnizova pojet́ı
infinitesimálńıho kalkulu matematiky 19. a 20. stolet́ı –
vyvolané at’ jǐz jejich neochotou či neschopnost́ı domyslet
a dotvořit základńı pojmy, o než se p̊uvodńı pojet́ı tohoto
kalkulu oṕıralo – bylo jedńım z nejvěťśıch omyl̊u nejen
matematiky, ale evropské vědy v̊ubec.
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a dotvořit základńı pojmy, o než se p̊uvodńı pojet́ı tohoto
kalkulu oṕıralo – bylo jedńım z nejvěťśıch omyl̊u nejen
matematiky, ale evropské vědy v̊ubec.
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Nonstandard Analysis 2

Merits and contributions of NSA (among other things):

• rehabilitation of the original infinitesimal calculus with
infinitely small and infinitely big numerical magnitudes

• continuity: f(x+ d) ≈ f(x) for d ≈ 0

• f ′(x) ≈ f(x+d)−f(x)
d , where 0 6= d ≈ 0

•
∫ b
a f(x) dx ≈

∑n
k=1 f(xk) d , a+ (k − 1)d ≤ xk ≤ a+ kd,

for “infinite” n ∈ N, d = (b− a)/n ≈ 0
• extension of all domains of mathematical objects by

abundance of new ideal elements
• extended domains have the same mathematical properties

w.r.t. original first-order language (transfer principle)
• every consistent “not too big” system of standard formulas

is satisfied by some object (saturation)
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Nonstandard Analysis 3

In particular:

• ∗N – hypernatural numbers: N ≺ ∗N, ∗N r N 6= ∅
• ∗R – hyperreal numbers: R ≺ ∗R, ∗R r R 6= ∅

F∗R = {x ∈ ∗R; ∃ r ∈ R, r > 0 : |x| ≤ r}
I∗R = {x ∈ ∗R; ∀ r ∈ R, r > 0 : |x| ≤ r}
finite and infinitesimal hyperreals, resp.

• ∗C – hypercomplex numbers: C ≺ ∗C, ∗C r C 6= ∅
F∗C = {x ∈ ∗C; ∃ r ∈ R, r > 0 : |x| ≤ r}
I∗C = {x ∈ ∗C; ∀ r ∈ R, r > 0 : |x| ≤ r}
finite and infinitesimal hypercomplex numbers, resp.

• for each finite hyperreal or hypercomplex number x there is
unique real or complex number ◦x = stx, called shadow or
standard part of x, such that x ≈ ◦x

• F∗R/I∗R ∼= R, F∗C/I∗C ∼= C
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Nonstandard Analysis 4

In general:

• every “standard” mathematical object M has its
“nonstandard” extension ∗M �M
the embedding M → ∗M is onto iff M is finite

• the whole universe U of “standard” mathematical objects is
embedded into the universe ∗U of “nonstandard” (internal)
objects (standard, internal and external objects)

• every standard set M can be embedded into a
hyperfinite set H ⊆ ∗M

• every standard vector space V over a field K can be
embedded into a hyperfinite dimensional vector space
H ⊆ ∗V over ∗K
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Nonstandard Analysis 5

On the other hand, not every standard group can be embedded
into a hyperfinite group.

In general, algebraic structure can be obstacle to embedability
into hyperfinite objects.

However, every standard abelian group can be embedded into a
hyperfinite abelian group.

D. Zeilberger: Continuous analysis and geometry are just
degenerate approximations to the discrete world [...] While
discrete analysis is conceptually simpler (and truer) than
continuous analysis, technically it is (usually) much more
difficult. Granted, real geometry and analysis were necessary
simplifications to enable humans to make progress in science
and mathematics [...]
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Nonstandard Analysis 6

Every completely regular topological space X can be
represented by a triplet (X,E,Xf), where

• X is an ambient hyperfinite set
• E : equivalence relation of infinitesimal nearness on X,
x ≈ y iff (x, y) ∈ E

• mon(x) = E[x] = {y ∈ X; x ≈ y} – monad of x ∈ X
• Xf : set of “finite” or “nearstandard”, i.e., accessible

elements of X;
y ≈ x ∈ Xf ⇒ y ∈ Xf , i.e. Xf = E[Xf ]

• X ∼= Xf/E = X[ – nonstandard hull or observable trace
of (X,E,Xf)
◦x = mon(x) ∈ X – the image of x ∈ Xf in X = Xf/E

• Xf and E are external sets; Xf is union and E is
intersection of “not too many” internal sets (Σ0

1 and Π0
1)
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Nonstandard Analysis 7

Topology of both X and X is more intuitively described in
terms of ≈ .

• Y ⊆ X is open iff ∀x ∈ Y ∃intA : mon(x) ⊆ A ⊆ Y
• S-continuity: x ≈ y ⇒ f(x) ≈ f(y)
• X is discrete iff E is internal on Xf (then E = IdX ,

w.l.o.g.)
• X is connected iff for any x, y ∈ Xf there is internal

sequence (x0, x1, . . . , xn) (with n ∈ ∗N) s.t. xk ∈ Xf ,
x = x0, xn = y, and xk ≈ xk+1 for k < n

• X is locally compact iff every hyperfinite set H ⊆ Xf of
pairwise discernible elements is finite

• X is compact iff, additionally, Xf is internal
(then Xf = X, w.l.o.g.)

• for X locally compact, compact subsets of X are exactly
A[ = {◦a; a ∈ A} for internal A ⊆ Xf (“pushing-down” A)
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Nonstandard Analysis 8

Internal function f : X → ∗C represents a function f : X→ C
only if f is S-continuous and finite on Xf :

• x ≈ y ⇒ f(x) ≈ f(y) for x, y ∈ Xf

• |f(x)| <∞, i.e., f(x) ∈ F∗C for x ∈ Xf

• then f(◦x) = ◦f(x) = st f(x) and f is continuous
• f ∈ C(X,E,Xf) is called lifting of f ∈ C(X)
• f = f [ = ◦(f �Xf), f is obtained by “pushing-down” f
• f ∈ Cu(X) iff f has (everywhere) S-continuous lifting
f ∈ C(X,E)

• f ∈ Cb(X) iff f has lifting f ∈ Cb(X,E,Xf), i.e.,
f ∈ C(X,E,Xf) and ‖f‖∞ = maxx∈X |f(x)| <∞

• f ∈ C0(X) iff f has lifting f ∈ C0(X,E,Xf), i.e.,
f ∈ Cb(X,E,Xf) and f(x) ≈ 0 for x ∈ X rXf
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Nonstandard Analysis 9

Not all internal functions f : X → ∗C represent standard
functions X→ C.

Some of them represent standard objects of different nature:
cosets of functions in Lebesgue Lp spaces, measures,
distributions, etc.
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Nonstandard Analysis 10

Loeb measure.
X is hyperfinite set, d : X → ∗R is internal, d(x) ≥ 0 for x ∈ X;
typically, d(x) = d is uniform (constant) on X

• d defines (hyper)discrete weighted counting measure
νd(A) =

∑
a∈A d(a) on the Boolean algebra ∗P(X)

of all internal subsets of X
• A 7→ ◦νd(A) , where ◦νd(A) =∞ if νd(A) /∈ F∗R ,

induces the Loeb measure λd on X, defined on
(the completion of) the σ-algebra generated by internal
subsets of X (a la Caratheodory)

• S ⊆ X is λd-measurable with finite measure λd(S) iff
sup{◦νd(A); A ⊆ S, A is internal}

= inf{◦νd(B); S ⊆ B ⊆ X, B is internal}
and both are finite
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Nonstandard Analysis 11

Every standard locally compact measurable space (X,B,m),
s.t. ..., can be represented as the observable trace X = Xf/E
of some “topological Loeb quadruplet” (X,E,Xf , d),
with hyperfinite X and uniform d, in such a way that

• νd(A) = d |A| <∞ for all internal A ⊆ Xf

• then, for A ∈ B,
m(A) = λd{x ∈ Xf ; ◦x ∈ A}

= sup
{◦(d |A|); A[ ⊆ A, A ⊆ X is internal

}
• f : X→ C is measurable iff it has internal lifting
f : X → ∗C, i.e.,

• f(◦x) = ◦f(x) a.e. on Xf w.r.t. λd

X ←−−−−
id

Xf −−−−→
◦

X

f

y yf = f[

∗C ◦−−−−→ ∗C/≈ id←−−−− C
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Nonstandard Analysis 12

Internal function f : X → ∗C is called SSS-integrable
w.r.t. Xf and d (even for nonconstant d) if

• ‖f‖
1,d

=
∑

x∈X |f(x)| d(x) <∞
•

∑
z∈Z |f(z)| d(z) ≈ 0 for internal Z ⊆ X rXf

•
∑

a∈A |f(a)| d(a) ≈ 0 for internal A ⊆ X s.t. νd(A) ≈ 0
• then

∫
Xf

◦f dλd ≈
∑

x∈X f(x) d(x)
• f is Sp-integrable if fp is S-integrable (1 ≤ p <∞)

Let, additionally, (X,B,m) be represented by (X,E,Xf , d), and
f : X→ C. Then

• f ∈ L1(X,m) iff f has S-integrable lifting
• f ∈ Lp(X,m) iff f has Sp-integrable lifting
• Lp(X,Xf , d) =

{
f ∈ ∗CX ; f lifts some f ∈ Lp(X,m)

}
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If f ∈ L1(X,Xf , d) is S-integrable lifting of f ∈ L1(X,m) then

•
∫
X f dm =

∫
Xf

◦f dλd ≈
∑

x∈X f(x) d(x)

• ‖f‖1 =
∫
X |f |dm =

∫
Xf

◦|f |dλd

≈
∑

x∈X |f(x)| d(x) = ‖f‖
1,d

Remarks.

Not every Sp-integrable function is in Lp(X,Xf , d) !
Lp(X,Xf , d) is dense in the subspace of Sp-integrable functions
w.r.t. some “week topology”.
Lp(X,Xf , d) is the closure of C00(X,E,Xf) w.r.t. the p -norm

‖f‖
p,d

=
(∑

x∈X |f(x)|p d(x)
)1/p
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M(X,Xf , d) consist of all internal functions g : X → ∗C s.t.
(the third condition defining S-integrability is omitted)

• ‖g‖
1,d

=
∑

x∈X |g(x)| d(x) <∞
•

∑
z∈Z |g(z)| d(z) ≈ 0 for internal Z ⊆ X rXf

Each g ∈M(X,Xf , d) represents a complex-valued regular
Borel measure with finite variation µ ∈ M(X)

• ‖µ‖ ≈ ‖g‖
1,d
<∞ (variation of µ)

•
∫

f dµ ≈
∑

x∈X f(x) g(x) d(x)

for f ∈ C0(X,E,Xf), f = f [ ∈ C0(X)
(Riesz rep. thm. + Radon-Nikodym thm. “ dµ ≈ g d(x) ”)

Every regular complex-valued Borel measure with finite
variation µ ∈ M(X) is obtained in this way from some
g ∈M(X,Xf , d); g is called lifting of µ w.r.t. Xf , E, d.
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Any group triplet (G,G0, Gf), where

• G is an internal ambient group
• Gf ≤ G is a Σ0

1-subgroup of finite elements of G
• G0 C Gf is a Π0

1-subgroup of infinitesimal elements of G

gives rise to a “topological triplet” (G,EG0 , Gf), where

• EG0 =
{
(x, y) ∈ G×G; xy−1 ∈ G0}

• and topological group G[ = Gf/G0 – observable trace
• G[ = Gf/G0 is locally compact iff

for any internal sets A, B, s.t. G0 ⊆ A ⊆ B ⊆ Gf ,
there is a finite set X = {x1, . . . , xk} ⊆ B s.t.
B ⊆ AX =

⋃k
i=1Axi

• G[ = Gf/G0 is abelian iff [Gf , Gf ] ⊆ G0, i.e.,
∀x, y ∈ Gf : [x, y] = xyx−1y−1 ∈ G0
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E. I. Gordon [1992]:
Every LCA group G can be represented as observable trace
G ∼= G[ = Gf/G0 of some group triplet (G,G0, Gf)
with hyperfinite abelian ambient group G.
In standard terms: Every LCA group G can be approximated
by finite abelian groups.

However small compact neighborhood U of 0 and
however big compact set K in G,
there is a finite abelian (U,K)-approximation (F, j) of G:

• F is finite abelian group
• j : F → G is injective mapping
• K ⊆ j(F ) + U =

⋃
a∈F j(a) + U

• ∀ a, b ∈ F : j(a), j(b), j(a+ b) ∈ K ⇒
⇒ j(a) + j(b)− j(a+ b) ∈ U
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⋃
a∈F j(a) + U

• ∀ a, b ∈ F : j(a), j(b), j(a+ b) ∈ K ⇒
⇒ j(a) + j(b)− j(a+ b) ∈ U
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• In case of HF ambient group G, G[ = Gf/G0

is locally compact iff for any internal sets A, B,
G0 ⊆ A ⊆ B ⊆ Gf ⇒ |B|

|A| <∞
• Haar measure mG = md is obtained by pushing down

Loeb measure λd for d = 1/|A| , normalizing multiplier,
where A is arbitrary internal set s.t. G0 ⊆ A ⊆ Gf

Can the dual group Ĝ = Ĝ[ = Ĝf/G0 be described in terms of
some group triplet, canonically related to the original triplet
(G,G0, Gf) ?
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Ĝ = ∗Hom(G, ∗T)
(
∼= G ∼= ̂̂

G
)

– internal dual group of G:
all internal homomorphisms γ : G→ ∗T

X∼ = {γ ∈ Ĝ; ∀x ∈ X : γ(x) ≈ 1}
Γ∼ = {x ∈ G; ∀ γ ∈ Γ : γ(x) ≈ 1}
infinitesimal annihilators of arbitrary sets X ⊆ G, Γ ⊆ Ĝ

• G∼
0 – all S-continuous characters in Ĝ (Σ0

1)

• G∼
f – all characters in Ĝ, infinitely close to 1 on Gf (Π0

1)

•
(
Ĝ,G∼

f , G
∼
0

)
– dual group triplet of (G,G0, Gf)

What’s the relation between the observable trace Ĝ[ = G∼
0 /G

∼
f

of the dual triplet
(
Ĝ,G∼

f , G
∼
0

)
and the dual Ĝ = Ĝ[ = Ĝf/G0

of the observable trace of the original triplet (G,G0, Gf) ?
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X∼ = {γ ∈ Ĝ; ∀x ∈ X : γ(x) ≈ 1}
Γ∼ = {x ∈ G; ∀ γ ∈ Γ : γ(x) ≈ 1}
infinitesimal annihilators of arbitrary sets X ⊆ G, Γ ⊆ Ĝ
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• G∼
0 – all S-continuous characters in Ĝ (Σ0
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Ĝ,G∼

f , G
∼
0

)
and the dual Ĝ = Ĝ[ = Ĝf/G0
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Example: Ĝ[ = G∼
0 /G

∼
f
∼= Ĝf/G0 = Ĝ[

K ∈ ∗N r N, N = 2K + 1, 0 < d <∞, Kd 6≈ 0
G = {nd; −K ≤ n ≤ K} with + modNd, (G,+) ∼= (ZN ,+)
G0 = G ∩ I∗R = {x ∈ G; x ≈ 0}
Gf = G ∩ F∗R = {x ∈ G; |x| <∞}

G[ = Gf/G0
∼=


Z if d 6≈ 0, as G0 = {0},
T if d ≈ 0, Kd <∞, as Gf = G,
R if d ≈ 0, Kd /∈ F∗R

d̂ = (Nd)−1, 0 < d̂ <∞, Kd̂ 6≈ 0
Ĝ = {nd̂; −K ≤ n ≤ K} with + modNd̂,

(
Ĝ,+

) ∼= (ZN ,+)
G∼

f = Ĝ ∩ I∗R =
{
y ∈ Ĝ; y ≈ 0

}
G∼

0 = Ĝ ∩ F∗R =
{
y ∈ Ĝ; |y| <∞

}
Ĝ[ = G∼

0 /G
∼
f
∼=


T if d 6≈ 0, as G∼

0 = Ĝ,
Z if d ≈ 0, Kd <∞, as G∼

f = {0},
R if d ≈ 0, Kd /∈ F∗R
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y ∈ Ĝ; y ≈ 0

}
G∼
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Ĝ[ = G∼

0 /G
∼
f
∼=


T if d 6≈ 0, as G∼

0 = Ĝ,
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Ĝ = {nd̂; −K ≤ n ≤ K} with + modNd̂,

(
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y ∈ Ĝ; |y| <∞

}
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0 /G

∼
f
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0 = Ĝ ∩ F∗R =
{
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Each γ : G→ ∗T in G∼
0 yields continuous character

γ[ : G→ T, by γ[(◦x) = ◦γ(x), for x ∈ Gf :
G ←−−−−

id
Gf −−−−→

◦
G

γ

y yγ[

∗T ◦−−−−→ ∗T/≈ id←−−−− T

• γ 7→ γ[ is group homomorphism G∼
0 → Ĝ

• with image
{
γ[; γ ∈ G∼

0

}
and kernel G∼

f

• it induces injective homomorphism G∼
0 /G

∼
f → Ĝ

• this canonic mapping is isomorphism of Ĝ[ = G∼
0 /G

∼
f

onto closed subgroup of Ĝ = Ĝ[ = Ĝf/G0

• non-S-continuous internal characters γ ∈ ĜrG∼
0

correspond neither to non-continuous characters of G,
nor even to mappings G→ T
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• with image
{
γ[; γ ∈ G∼

0

}
and kernel G∼

f

• it induces injective homomorphism G∼
0 /G

∼
f → Ĝ
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Gordon’s Conjecture 1 (GC1):
The canonic mapping G∼

0 /G
∼
f → Ĝf/G0 is isomorphism of

topological groups.

• enough to show that γ 7→ γ[ is onto, i.e., every character
γ ∈ Ĝ is of form γ = γ[ for some γ ∈ G∼

0

• by PvK duality this is equivalent to G∼∼
0 ∩Gf = G0 ,

i.e., characters in
{
γ[; γ ∈ G∼

0

}
separate points in G

(density follows)
• I proved a bit more [PZ, June – July 2012]: G∼∼

0 = G0

• G∼∼
f = Gf +G∼∼

0 = Gf , i.e.,
the dual triplet of

(
Ĝ,G∼

f , G
∼
0

)
is (G,G0, Gf)

• methods: NSA + Harmonic An. + Additive Combinatorics
(G. Freiman, B.Green, I. Ruzsa, T.Tao, V. Vu, ...):
analysis of Bohr sets and spectral sets
St(f) =

{
γ ∈ Ĝ; |f̂(γ)| ≥ t ‖f‖

1

}
(f ∈ CG, ∗CG, t ∈ [0, 1])
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γ ∈ Ĝ; |f̂(γ)| ≥ t ‖f‖

1

}
(f ∈ CG, ∗CG, t ∈ [0, 1])



Pontryagin-vanKampen Duality Fourier Transform Nonstandard Analysis PvK Duality & FT in HF Ambience

PvK Duality & FT in HF Ambience 7

Gordon’s Conjecture 1 (GC1):
The canonic mapping G∼

0 /G
∼
f → Ĝf/G0 is isomorphism of

topological groups.

• enough to show that γ 7→ γ[ is onto, i.e., every character
γ ∈ Ĝ is of form γ = γ[ for some γ ∈ G∼

0

• by PvK duality this is equivalent to G∼∼
0 ∩Gf = G0 ,

i.e., characters in
{
γ[; γ ∈ G∼

0

}
separate points in G

(density follows)
• I proved a bit more [PZ, June – July 2012]: G∼∼

0 = G0

• G∼∼
f = Gf +G∼∼

0 = Gf , i.e.,
the dual triplet of

(
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St(f) =

{
γ ∈ Ĝ; |f̂(γ)| ≥ t ‖f‖

1

}
(f ∈ CG, ∗CG, t ∈ [0, 1])
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There are proper nontrivial subgroups H ≤ G s.t. H∼ = {1G}
(trivial character), hence H∼∼ = G.

The equality G∼∼
0 = G0, in fact the inclusion G∼∼

0 ⊆ G0, is
equivalent, in standard terms, to the following thm.

Let α, β ∈ (0, 2π/3) and q = (qj)
∞
j=1, qj ≥ 1 be sequence in R.

Then there exists n ∈ N, depending just on α, β and q , s.t.:
If G is finite abelian group and 0 ∈ An ⊆ . . . ⊆ A1 ⊆ A0 ⊆ G
are symmetric sets s.t., for 1 ≤ j ≤ n,

Aj +Aj ⊆ Aj−1 and |Aj−1|
|Aj | ≤ qj

then Bα

(
Bβ(An)

)
⊆ A0.

• by PvK duality: ∀α, β ∀q ∀G ∀ (Aj) ∃n : . . .⇒ . . .

• gained uniformity: ∀α, β ∀q ∃n ∀G ∀ (Aj) : . . .⇒ . . .

• no estimate for n = n(α, β,q)
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Surjectivity of canonic mapping γ 7→ γ[ : G∼
0 /G

∼
f → Ĝf/G0 is

equivalent, in standard terms, to the following stability thm.

Let α, ε ∈ (0, 2π/3), k ≥ 1 and q = (qj)
∞
j=1, qj ≥ 1. There exist

m ≥ 1, n ≥ k and δ > 0, depending just on α, ε, k and q, s.t.:

If G is finite abelian group and 0 ∈ An ⊆ . . . ⊆ A1 ⊆ A0 ⊆ G
are symmetric sets s.t., for 1 ≤ j ≤ n,

Aj +Aj ⊆ Aj−1 and |Aj−1|
|Aj | ≤ qj

then for every partial δ-homomorphism g : mA0 → T , s.t.
|arg g(x)| ≤ α for x ∈ Ak, there exists genuine homomorphism
γ : G→ T s.t., for each x ∈ A0,∣∣∣arg γ(x)

g(x)

∣∣∣ ≤ ε
“partial δ-homomorphism” g : A→ T means:

∀x, y ∈ A : x+ y ∈ A ⇒
∣∣arg

(
g(x+ y)/g(x) g(y)

)∣∣ ≤ δ
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Haar measure on G = Gf/G0 is given as mG = md

for normalizing multiplier d s.t. d |A| ∈ F∗R r I∗R
for some (each) internal A, G0 ⊆ A ⊆ Gf .

Haar measure on Ĝ = G∼
0 /G

∼
f is given as m bG = md̂

for normalizing multiplier d̂ s.t. d̂ |Bα(A)| ∈ F∗R r I∗R
for some (each) internal A, G0 ⊆ A ⊆ Gf , α ∈ (0, 2π/3).

Can we have Plancherel identity and Fourier inversion formula,
i.e., d d̂ |G| = 1 , with such normalizing multipliers?

Gordon’s Conjecture 2 (GC2):
If d is normalizing multiplier for the triplet (G,G0, Gf) then
d̂ = (d |G|)−1 is normalizing multiplier for the dual triplet(
Ĝ,G∼

f , G
∼
0

)
. Equivalently, for internal A, G0 ⊆ A ⊆ Gf ,

α ∈ (0, 2π/3),
|A| |Bα(A)|
|G|

∈ F∗R r I∗R
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Some accounts on the relation between Loeb measure and Haar
measure show: GC1 ⇒ GC2

I gave a more direct and clear proof of GC2 by similar methods
like those in GC1.
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Recall, for f ∈ ∗CG, 1 ≤ p <∞, d normalizing multiplier:

‖f‖p = ‖f‖
p,d

=
(
d

∑
x∈G |f(x)|p

)1/p

‖f‖∞ = maxx∈G |f(x)|

Similarly, for φ ∈ ∗C bG, with normalizing multiplier
d̂ =

(
d |G|

)−1

f ∈ ∗CG is called Sp-continuous if ‖fa − f‖p ≈ 0 for a ∈ G0,
where fa(x) = f(x+ a) is the a-shift of f .

φ ∈ ∗C bG is called Sp-continuous if ‖φγ − φ‖p ≈ 0 for γ ∈ G∼
f ,

where φγ(χ) = φ(γ χ) is the γ-shift of φ.

• S∞ -continuous is just S-continuous
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Recall:

Lp(G,G0, Gf) =
{
f ∈ ∗CG; f lifts some f ∈ Lp(G,md)

}
C0(G,G0, Gf) =

{
f ∈ ∗CG; f lifts some f ∈ C0(G)

}
Cb(G,G0) =

{
f ∈ ∗CG; f lifts some f ∈ Cbu(G)

}
Characterization of liftings.

Let f ∈ ∗CG. Then f ∈ Lp(G,G0, Gf) iff

• ‖f‖p <∞
• d

∑
z∈Z |f(z)|p ≈ 0 for internal Z ⊆ GrGf

• f is Sp-continuous

Lp(G,G0, Gf) =
{
f ∈ ∗CG; fp ∈M(G,Gf , d) & f is Sp-continuous

}
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Smoothness-and-Decay Principle.

Let 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1
p + 1

q = 1, f ∈ ∗CG, ‖f‖p <∞. Then

• f is Sp-continuous ⇒
(
f̂

)q ∈M
(
Ĝ,G∼

0 , d̂
)

• fp ∈M(G,Gf , d) ⇒ f̂ is Sq-continuous
• f ∈ Lp(G,G0, Gf) ⇒ f̂ ∈ Lq

(
Ĝ,G∼

f , G
∼
0

)

In particular:

• f ∈ L1(G,G0, Gf) ⇒ f̂ ∈ C0
(
Ĝ,G∼

f , G
∼
0

)
(HF dimensional version of Riemann-Lebesgue thm.)

• f ∈ L2(G,G0, Gf) ⇔ f̂ ∈ L2
(
Ĝ,G∼

f , G
∼
0

)
(in some special cases proved by
Albeverio-Gordon-Khrennikov [2000])

• f ∈M(G,Gf , d) ⇒ f̂ ∈ Cb
(
Ĝ,G∼

f

)
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Ĝ,G∼

f , G
∼
0

)
(HF dimensional version of Riemann-Lebesgue thm.)

• f ∈ L2(G,G0, Gf) ⇔ f̂ ∈ L2
(
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Ĝ,G∼

f , G
∼
0

)
In particular:

• f ∈ L1(G,G0, Gf) ⇒ f̂ ∈ C0
(
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Ĝ,G∼

f , G
∼
0

)
(in some special cases proved by
Albeverio-Gordon-Khrennikov [2000])

• f ∈M(G,Gf , d) ⇒ f̂ ∈ Cb
(
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Ĝ,G∼

f , G
∼
0

)
(HF dimensional version of Riemann-Lebesgue thm.)

• f ∈ L2(G,G0, Gf) ⇔ f̂ ∈ L2
(
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Approximation of Fourier transform.

G = Gf/G0, Ĝ = G∼
0 /G

∼
f ,

f 7→ f̂ – discrete HF dimensional FT ∗CG → ∗C bG
Discrete HF dimensional FT approximates all the classical FTs:

• F : L1(G)→ C0

(
Ĝ

)
:

f ∈ L1(G) is lifting of f ∈ L1(G) ⇒
f̂ ∈ C0

(
Ĝ

)
is lifting of F(f) ∈ C0

(
Ĝ

)
• F : Lp(G)→ Lq

(
Ĝ

)
(1 < p ≤ 2, 1

p + 1
q = 1) :

f ∈ Lp(G) is lifting of f ∈ Lp(G) ⇒
f̂ ∈ Lq

(
Ĝ

)
is lifting of F(f) ∈ Lq

(
Ĝ

)
for p = q = 2 this settles Gordon’s Conjecture 3
[PZ, October 2012]
• F : M(G)→ Cbu

(
Ĝ

)
:

g ∈M(G) is lifting of µ ∈ M(G) ⇒
ĝ ∈ Cb

(
Ĝ

)
is lifting of F(µ) ∈ Cbu

(
Ĝ

)
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Ĝ

)



Pontryagin-vanKampen Duality Fourier Transform Nonstandard Analysis PvK Duality & FT in HF Ambience

PvK Duality & FT in HF Ambience 15

Approximation of Fourier transform.

G = Gf/G0, Ĝ = G∼
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Ĝ

)
is lifting of F(f) ∈ Lq

(
Ĝ
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0 /G

∼
f ,

f 7→ f̂ – discrete HF dimensional FT ∗CG → ∗C bG
Discrete HF dimensional FT approximates all the classical FTs:

• F : L1(G)→ C0

(
Ĝ
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ĝ ∈ Cb

(
Ĝ
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ĝ ∈ Cb

(
Ĝ
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0 /G

∼
f ,

f 7→ f̂ – discrete HF dimensional FT ∗CG → ∗C bG
Discrete HF dimensional FT approximates all the classical FTs:

• F : L1(G)→ C0

(
Ĝ
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Ĝ

)
(1 < p ≤ 2, 1

p + 1
q = 1) :

f ∈ Lp(G) is lifting of f ∈ Lp(G) ⇒

f̂ ∈ Lq
(
Ĝ
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0 /G

∼
f ,

f 7→ f̂ – discrete HF dimensional FT ∗CG → ∗C bG
Discrete HF dimensional FT approximates all the classical FTs:

• F : L1(G)→ C0

(
Ĝ
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Ĝ

)
:

g ∈M(G) is lifting of µ ∈ M(G) ⇒
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ĝ ∈ Cb

(
Ĝ
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Ĝ

)
is lifting of F(f) ∈ C0

(
Ĝ
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ĝ ∈ Cb

(
Ĝ
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